Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202410245, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38887146

RESUMEN

The emergence of covalent adaptable networks (CANs) based on dynamic covalent bonds (DCBs) presents a promising avenue for achieving resource recovery and utilization. In this study, we discovered a novel dynamic covalent bond called selenacetal, which is obtained through a double click reaction between selenol and activated alkynes. Density functional theory (DFT) calculations demonstrated that the ΔG for the formation of selenoacetals ranges from 12 to 18 kJ mol-1, suggesting its potential for dynamic reversibility. Dynamic exchange experiments involving small molecules and polymers provide substantial evidence supporting the dynamic exchange properties of selenoacetals. By utilizing this highly efficient click reaction, we successfully synthesized dynamic materials based on selenoacetal with remarkable reprocessing capabilities without any catalysts. These materials exhibit chemical recycling under alkaline conditions, wherein selenoacetal (SA) can decompose into active enone selenide (ES) and diselenides. Reintroducing selenol initiates a renewed reaction with the enone selenide, facilitating material recycling and yielding a newly developed dynamic material exhibiting both photo- and thermal responsiveness. The results underscore the potential of selenoacetal polymers in terms of recyclability and selective degradation, making them a valuable addition to conventional covalent adaptable networks.

2.
Nanoscale ; 16(12): 6033-6040, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38411005

RESUMEN

Herein, we present the investigation of the visible light transparency and optical limiting characteristics of one dimensional photonic crystals with LiNbO3 defects fabricated by the sputtering technique. Transmission spectroscopy measurements reveal a broad photonic band gap with a 1064 nm defect mode and high transmittance within the visible range. The optical energy limiting performance in the photonic crystal can be attributed to the strong confinement of the optical field surrounding the LiNbO3 defect layer. The low energy 1064 nm laser demonstrates a transmittance of 82.15%. Notably, the optical limiting threshold is lower at 62.03 mJ cm-2 in comparison with conventional optical limiting materials. Additionally, the optical limiter achieves a transmittance of 68.57% within the visible light band.

3.
Biomed Pharmacother ; 171: 116172, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38278025

RESUMEN

Chronic inflammation can promote cancer development as observed in inflammation-induced colorectal cancer (CRC). However, the poor treatment outcomes emphasize the need for effective treatment. Astragalus polysaccharide (APS), a vital component of the natural drug Astragalus, has anti-tumor effects by inhibiting cancer cell proliferation and enhancing immune function. In this study, we found that APS effectively suppressed CRC development through activating CD8+ T cells and reversing its inhibitory state in the tumor microenvironment (TME) of AOM/DSS inflammation-induced CRC mice. Network pharmacology and clinical databases suggested that the STAT3/ Galectin-3(Gal-3)/LAG3 pathway might be APS's potential target for treating CRC and associated with CD8+ T cell dysfunction. In vivo experiments showed that APS significantly reduced phosphorylated STAT3 and Gal-3 levels in tumor cells, as well as LAG3 in CD8+ T cells. Co-culture experiments with MC38 and CD8+ T cells demonstrated that APS decreased the expression of co-inhibitory receptor LAG3 in CD8+ T cells by targeting STAT3/Gal-3 in MC38 cells. Mechanism investigations revealed that APS specifically improved CD8+ T cell function through modulation of the STAT3/Gal-3/LAG3 pathway to inhibit CRC development, providing insights for future clinical development of natural anti-tumor drugs and immunotherapies as a novel strategy combined with immune checkpoint inhibitors (ICIs).


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Animales , Ratones , Linfocitos T CD8-positivos , Antineoplásicos/farmacología , Inflamación/metabolismo , Neoplasias Colorrectales/patología , Polisacáridos/metabolismo , Microambiente Tumoral
4.
Polymers (Basel) ; 15(20)2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37896390

RESUMEN

Porous carbon nitride/bismuth oxychloride (PCN/BiOCl-x) polymer-based heterojunction photocatalysts were successfully synthesized via a simple in situ hydrothermal method. A PCN/BiOCl heterojunction with rich chlorine defects is prepared by adjusting the chlorine content of the BiOCl unit in the heterojunction by changing the solvent. The as-prepared catalysts were characterized via BET, SEM, TEM, XRD, XPS and optical testing, and they were used for a photocatalytic amine oxidation reaction. The results indicated that the catalytic performance of the PCN/BiOCl heterojunction was significantly enhanced due to the rich chlorine vacancies in the samples. The enhanced catalytic activity may be attributed to the Z-scheme heterojunction, abundant chlorine defects and large specific surface area. At the same time, the catalyst circulation experiment shows that the PCN/BiOCl heterojunction has good circulation performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...