Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
J Periodontal Res ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39319591

RESUMEN

AIM: The high glucose (HG) environment in diabetic periodontitis aggravates the damage of periodontal tissue. Pyroptosis has been shown to be positively correlated with the severity of periodontitis, including macrophage pyroptosis. O-GlcNAcylation is a posttranslational modification that is involved in the pathogenesis of periodontitis. However, whether HG regulates macrophage pyroptosis through O-GlcNAcylation remains uncertain. This study aimed to investigate the effect of HG on the O-GlcNAcylation level of a pyroptosis regulator GSDME in macrophages to further probe the mechanisms of diabetic periodontitis. METHODS: Blood samples were collected from patients with diabetic periodontitis. THP-1 monocytes were induced to differentiate into macrophages by phorbol 12-myristate 13-acetate and then treated with HG to simulate periodontitis in vitro. GSDME expression of blood samples and macrophages was measured by quantitative real-time PCR. Pyroptosis was assessed by propidium iodide staining, measurement of cell viability, cytotoxicity, protein levels of inflammation factors, and pyroptosis-related proteins. O-GlcNAcylation of GSDME was analyzed using co-immunoprecipitation (co-IP), IP, and western blot. RESULTS: The results showed that GSDME expression was elevated in patients with periodontitis and HG-treated macrophages. HG inhibited cell viability but increased LDH content, levels of IL-1ß, IL-18, TNF-α, NLRP3, GSDMD, and Caspase-1, indicating that HG promoted pyroptosis of macrophages, which was reversed by GSDME knockdown. HG treatment increased O-GlcNAcylation in macrophages. Mechanically, GSDME interacted with OGT, and OGT knockdown suppressed O-GlcNAcylation of GSDME at Ser (S)339 site. Knockdown of OGT inhibited pyroptosis in HG-treated macrophages, while GSDME overexpression partially reversed this inhibition. CONCLUSION: HG treatment enhanced OGT-mediated GSDME O-GlcNAcylation, thereby augmenting pyroptosis in LPS-induced macrophages. These results may provide a novel sight for the treatment of periodontitis.

2.
Fish Physiol Biochem ; 50(2): 435-448, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38047980

RESUMEN

Schizothorax oconnori (S. oconnori) is an economically important fish in Tibet. Oocyte maturation is a physiological process that is of great significance to reproduction and seed production in S. oconnori, yet little is currently known regarding the molecular mechanisms of oocyte development in this species. To identify candidate genes involved in reproduction of female fish, a combination of PacBio and Illumina HiSeq technologies was employed to provide deep coverage of the oocyte transcriptome. Transcriptome analysis revealed several candidate genes that are potentially involved in the regulation of oocyte maturation in S. oconnori, including GIRK1, CHRM3, NPY2R, GABRA3, GnRH3, mGluR1α, GPER1, GDF9, HSP90, and ESR2. Genes that are significantly expressed during oocyte maturation mainly contribute to the GPCR signaling pathway and the estrogen signaling pathway. Neurotransmitter (Ach, NPY, and GABA) and peptide hormone (GnRH3) binding to G protein-coupled receptors (GPCRs) frees G-protein ßγ subunits to interact with the G protein-gated inward rectifier K+ channel 1 (GIRK1). This process helps release K+ from granulosa cells to maturing oocytes, allowing yolk globule fusion. This mechanism may play an important role in oocyte maturation in S. oconnori. In conclusion, this study provides a valuable basis for deciphering the reproductive system in S. oconnori during the oocyte maturation process.


Asunto(s)
Cyprinidae , Cipriniformes , Femenino , Animales , Cipriniformes/genética , Oocitos/metabolismo , Oogénesis/genética , Cyprinidae/genética , Perfilación de la Expresión Génica/veterinaria , Transcriptoma
3.
Sci Rep ; 13(1): 14536, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37666872

RESUMEN

The seed oil of Echium plantagineum L. is rich in unsaturated fatty acids. With the gradual development of the value of echium oil in food, medical care and cosmetics, the corresponding market demand has also increased. The selection of suitable cultivars and the increase of yield per unit area has also become one of the main objectives of current breeding and cultivation of E. plantagineum. To effectively use the local photothermal resources, to improve the use of light energy by E. plantagineum, and to enhance the growth and yield of E. plantagineum. E. plantagineum cultivars Blue Bedder and Mixed Bedding were used as research subjects to study the effects of different sowing dates (1 May, 8 May, 15 May, 22 May and 29 May) on the photosynthetic characteristics and yield of E. plantagineum. Under the same cultivar conditions, with the delay in sowing date, the leaf chlorophyll content (SPAD), photosynthetic rate (Pn), transpiration rate (Tr), stomatal limitation value (Ls), photochemical quenching (qP), electron transfer rate (ETR), actual photochemical efficiency (ΦpsII) and yield of Blue Bedder decreased and reached a maximum at T1, while the SPAD, Pn, Tr, water use efficiency (WUE), Ls, initial fluorescence (Fo), maximum fluorescence (Fm), qP, ETR, ΦpsII and yield of Mixed Bedding reached the maximum at T4. Blue Bedder should be sown early at T1 and Mixed Bedding late at T4 during planting, which will help to improve the photosynthetic characteristics and grain yield of E. plantagineum.


Asunto(s)
Echium , Humanos , Fluorescencia , Fitomejoramiento , Clorofila , Grano Comestible
4.
Anal Methods ; 15(35): 4518-4523, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37622284

RESUMEN

Many traditional Chinese herbs are susceptible to ochratoxin A (OTA), a potent mycotoxin, which causes serious effects on the quality of the herb and on people's health. The development of methods to detect OTA is extremely important. Most methods for detecting OTA are based on a single-signal output mode, which might be easily influenced by complex environmental conditions. In this research, by taking advantage of the cleavage of DNA by target-induced CRISPR-Cas12a activity and the difference in electrostatic force of DNA to different charge electrochemiluminescent (ECL) and electrochemical (EC) probes, a biosensor is developed for the detection of OTA. First, the CRISPR-Cas12a system consists of a well-designed crRNA, its complementary strand (also as an aptamer for OTA), and Cas12a. Without the target, this CRISPR-Cas12a system is in the "activated stage", which digests hairpin DNA on the electrode, resulting in a weak ECL signal and strong current response. With the introduction of OTA bound with the aptamer, CRISPR-Cas12a activity is inhibited ("locked stage"). Thus, hairpin DNA remained intact on the electrode, resulting in recovery of the ECL signal and attenuation of the current intensity. As a result, this label-free dual-mode sensing platform realizes an assay for OTA in Morinda officinalis. This target-regulated CRISPR-Cas12a activity-sensing platform with dual-mode output not only provides high sensitivity (due to the CRISPR-Cas12a system), but also has good anti-interference ability against complex substrates (due to dual-mode output), and exhibits a broad range of prospects for application.


Asunto(s)
Morinda , Micotoxinas , Ocratoxinas , Rubiaceae , Humanos , Sistemas CRISPR-Cas/genética , Oligonucleótidos
5.
Anal Methods ; 15(7): 987-992, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36734614

RESUMEN

Zearalenone (ZEN), a widespread mycotoxin, can cause great harm to people's health. In order to assay ZEN, an immobilization-free electrochemical sensor has been developed. A multifunctional hairpin DNA has been carefully designed, including three functions: the aptamer for zearalenone (ZEN), primer, and template sequence. This hairpin DNA can anchor on polydopamine nanospheres (PDANSs), which can protect DNA against the digestion of enzymes and prevent the occurrence of strand displacement amplification (SDA). In the presence of ZEN, the hairpin DNA is dissociated from PDANSs due to the interaction between ZEN and the aptamer, and the SDA reaction is initiated with the help of endonuclease and polymerase. During the SDA process, substantial amounts of negatively charged dsDNA are generated. The MB molecules are embedded into the dsDNA grooves to obtain the complex with a negative charge. The confined MB is repelled on the surface of the negatively charged ITO electrode, leading to the decline of the current. This immobilization-free method possesses high sensitivity (LOD of 0.18 pg mL-1) and good selectivity and can be applied to assay ZEN in corn flour.


Asunto(s)
Aptámeros de Nucleótidos , Nanosferas , Zearalenona , Humanos , Zearalenona/análisis , Aptámeros de Nucleótidos/química , ADN/química
6.
Int J Nanomedicine ; 18: 663-677, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36798532

RESUMEN

Introduction: Metastasis is a major challenge in breast cancer therapy. The successful chemotherapy of breast cancer largely depends on the ability to block the metastatic process. Herein, we designed a dual-targeting and stimuli-responsive drug delivery system for targeted drug delivery against breast cancer metastasis. Methods: AS1411 aptamer-modified chondroitin sulfate A-ss-deoxycholic acid (ACSSD) was synthesized, and the unmodified CSSD was used as the control. Chemotherapeutic drug doxorubicin (DOX)-containing ACSSD (D-ACSSD) micelles were prepared by a dialysis method. The ACSSD conjugate was confirmed by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), dynamic light scattering (DLS), and transmission electron microscopy (TEM). In vitro cellular uptake and cytotoxicity of D-ACSSD micelles were studied by confocal laser scanning microscopy (CLSM) and MTT assay in breast tumor cells. The inhibition capability of D-ACSSD micelles in cell migration and invasion was carried out in 4T1 cells. In vivo antitumor activity of DOX-containing micelles was investigated in metastatic 4T1-bearing Balb/c mice. Results: D-ACSSD and DOX-loaded CSSD (D-CSSD) micelles exhibited high drug encapsulation content and reduction-responsive characteristics. D-ACSSD micelles were spherical in shape. Compared with D-CSSD, D-ACSSD showed higher cellular uptake and more potent killing activity in 4T1 and MDA-MB-231 cells. Additionally, D-ACSSD exhibited stronger inhibitory effects on the invasion and migration of highly metastatic 4T1 cells than unmodified D-CSSD. Among the DOX-containing formulations, D-ACSSD micelles presented the most effective inhibition of tumor growth and lung metastasis in orthotopic 4T1-bearing mice in vivo. It also revealed that ACSSD micelles did not exhibit obvious systemic toxicity. Conclusion: The smart D-ACSSD micelles could be a promising delivery system for the therapy of metastatic breast cancer.


Asunto(s)
Micelas , Neoplasias Cutáneas , Animales , Ratones , Sulfatos de Condroitina , Doxorrubicina , Sistemas de Liberación de Medicamentos , Línea Celular Tumoral , Ratones Endogámicos BALB C , Melanoma Cutáneo Maligno
7.
Atmos Environ (1994) ; 278: 119076, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35370436

RESUMEN

After the global outbreak of COVID-19, the Chinese government took many measures to control the spread of the virus. The measures led to a reduction in anthropogenic emissions nationwide. Data from a single particle aerosol mass spectrometer in an eastern Chinese megacity (Hangzhou) before, during, and after the COVID-19 lockdown (5 January to February 29, 2020) was used to understand the effect lockdown had on atmospheric particles. The collected single particle mass spectra were clustered into eight categories. Before the lockdown, the proportions of particles ranked in order of: EC (57.9%) < K-SN (13.6%) < Fe-rich (10.2%) < ECOC (6.7%) < K-Na (6.6%) < OC (3.4%) < K-Pb (1.0%) < K-Al (0.7%). During the lockdown period, the EC and Fe-rich particles decreased by 42.8% and 93.2% compared to before lockdown due to reduced vehicle exhaust and industrial activity. By contrast, the K-SN and K-Na particles containing biomass burning tracers increased by 155.2% and 45.2% during the same time, respectively. During the lockdown, the proportions of particles ranked in order of: K-SN (39.7%) < EC (38.1%) < K-Na (11.0%) < ECOC (7.7%) < OC (1.2%) < K-Pb (0.9%) < Fe-rich (0.8%) < K-Al (0.6%). Back trajectory analysis indicated that both inland (Anhui and Shandong provinces) and marine transported air masses may have contributed to the increase in K-SN and K-Na particles during the lockdown, and that increased number of fugitive combustion points (i.e., household fuel, biomass combustion) was a contributing factor. Therefore, the results imply that regional synergistic control measures on fugitive combustion emissions are needed to ensure good air quality.

8.
Talanta ; 237: 122967, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34736691

RESUMEN

Taking advantage of an exquisite hairpin DNA for strand displacement amplification (SDA) and the magnetic Fe3O4-graphene oxide nanosheets (MGN) as the carrier, an immobilization-free ECL biosensor was constructed for ultra-trace detection of Cd2+. Firstly, the ECL probe Ru (phen)32+ easily diffuses in the solution and reaches the electrode surface to induce strong ECL signal. This is because the pre-designed hairpin DNA is constrained by MGN in the absence of Cd2+. The presence of Cd2+ releases cDNA by binding to its corresponding aptamer, leading to removal of hairpin DNA away from the surface of MGN. In this case, SDA amplification was evoked and generated numerous dsDNA which further trapped Ru (phen)32+ in its groove. It is difficult for the embedded ECL probe to touch the electrode surface to generate ECL signal. Therefore, the concentration of Cd2+ was monitored according to the attenuation of ECL signal. This method showed high sensitivity to Cd2+ with a detection limit of 1.1 × 10-4 ppb. Moreover, it not only avoids many condition optimizations required in the conventional SDA method, but also circumvent the modification and immobilization of DNA probe. This sensor is further applied in the detection of Cd2+ in the sample of traditional Chinese medicine.


Asunto(s)
Técnicas Biosensibles , Cadmio , Sondas de ADN , Mediciones Luminiscentes , Fenómenos Magnéticos
9.
J Ethnopharmacol ; 285: 114894, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34871767

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Echium vulgare L. and Echium plantagineum L. originated in the Mediterranean, and were later domesticated in Africa, America, Asia, Europe and Oceania, where they were widely used to treat many diseases including cough, urinary tract infection, fever, inflammation and muscle strain. AIM OF THE STUDY: The purpose of this review is to provide scientific literature on the traditional uses, bioactive chemical components and pharmacological activities of two species of Echium, and to critically analyze the information provided, so as to understand the current work on these two species and explore the possible prospect of this plant in pharmaceutical research. METHODS: Systematic review and meta-analysis were conducted according to Prisma guidelines, and the related literatures searched on Google Academic, Science Direct, Baidu Scholars and China National Knowledge Infrastructure (CNKI) up to June 2021 were reviewed. The key words used are: Echium, E.vulgare, E.plantagineum, plant components, chemical components, pharmacological activities, pharmaceutical products and applications. Thereafter all eligible studies are analyzed and summarized in this review. The selection of manuscripts is based on the following inclusion criteria: the article has years of research or publication, is published in English, Portuguese or Spanish and Chinese, and there are keywords in the title, abstract, keywords or full text of the article. For the selection of manuscripts, first, select articles according to titles, then summarize them, and finally, analyze the full text of the publication. Elimination criteria: 1. Duplicate reports; 2. There are research design defects and poor quality; 3. Incomplete data and unclear ending effect; 4. The statistical method is wrong and cannot be corrected. RESULTS: The pharmacological characteristics of E.vulgare and E.plantagineum can basically support their traditional use, but the medicinal substances contained in them are quite different in composition and content, and the development and application of corresponding products are also different. CONCLUSIONS: At present, there is little clinical data about drugs related to the two species, and more research is needed in the future, especially human experiments and clinical trials, to evaluate the cellular and molecular mechanisms based on pharmacological, biological activity and safety studies, and to provide more powerful scientific basis for their traditional medicinal properties. In addition, the further application and development of the medicinal products of E.vulgare and E.plantagineum still need to be precise and identified, so as to give full play to their medicinal potential.


Asunto(s)
Echium/química , Fitoterapia , Extractos Vegetales/farmacología , Plantas Medicinales/química , Animales , Echium/clasificación , Humanos , Extractos Vegetales/química , Especificidad de la Especie
10.
Exp Ther Med ; 21(3): 224, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33603833

RESUMEN

The mevalonate (MVA) pathway serves an important role in ventricular remodeling. Targeting the MVA pathway has protective effects against myocardial fibrosis. The present study aimed to investigate the mechanism behind these effects. Primary cultured cardiac fibroblasts from C57BL/6 mice were treated in vitro in 5 groups: i) negative control; ii) angiotensin II (Ang II) model (1x10-5 mol/l); iii) Ang II + rosuvastatin (ROS); iv) Ang II + alendronate (ALE); and v) Ang II + fasudil (FAS). Collagen and crystal violet staining were used to assess morphological changes in cardiac fibroblasts. Reverse transcription quantitative PCR and western blotting were used to analyze the expression of key signaling molecules involved in the MVA pathway. Collagen staining in the ALE, FAS, and ROS groups was weak compared with the Ang II group, while the rate of cell proliferation in the ROS, ALE, and FAS groups was slower compared with that in the Ang II group. In addition, the expression of key signaling molecules in the MVA pathway, including transforming growth factor-ß1 (TGF-ß1), heat shock protein 47 (HSP47), collagen type I α1 (COL1A1), vascular endothelial growth factor 2 (VEGF2) and fibroblast growth factor 2 (FGF2), was decreased in the FAS and ROS groups compared with the Ang II model. Compared with the Ang II group, 3-Hydroxy-3-Methylglutaryl-CoA reductase (HMGCR) gene expression was significantly lowered in the drug intervention groups, whereas farnesyl pyrophosphate synthase (FDPS) expression was downregulated in the ALE group, but elevated in the FAS and ROS groups. Compared with that in the Ang II group, ras homolog family member A (RhoA) expression was downregulated in the FAS and ROS groups, whilst mevalonate kinase expression was reduced in the ROS group. Protein expression of TGF-ß1, COL1A1 and HSP47 were decreased following intervention with each of the three drugs compared with the Ang II group. Overall, rosuvastatin, aledronate and fasudil decreased the proliferation of myocardial fibroblasts and inhibited collagen synthesis. Rosuvastatin had the strongest protective effects against myocardial fibrosis compared with the other drugs tested, suggesting this to be a potential agent for the clinical treatment of cardiovascular disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA