Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 362
Filtrar
1.
NPJ Precis Oncol ; 8(1): 139, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38956432

RESUMEN

Immunotherapy exhibited potential effects for advanced hepatocellular carcinoma, unfortunately, the clinical benefits are often countered by cancer adaptive immune suppressive response. Uncovering the mechanism how cancer cells evade immune surveillance would help to develop new immunotherapy approaches and combination therapy. In this article, by analyzing the transcriptional factors which modulate the differentially expressed genes between T cell infiltration high group and low group, we identified oncoprotein B cell lymphoma 6 (BCL6) suppresses the infiltration and activation of tumor infiltrating T lymphocytes, thus correlated with poorer clinical outcome. By using antibody deletion experiment, we further demonstrated that CD4+T cells but not CD8+T cells are the main lymphocyte population suppressed by Bcl6 to promote HCC development. Mechanistically, BCL6 decreases cancer cell expression of pro-inflammatory cytokines and T lymphocyte chemokines such as IL6, IL1F6, and CCL5. Moreover, BCL6 upregulates Endothelial cell-specific molecule 1 (ESM1) to inhibit T lymphocyte recruitment and activation possibly through ICAM-1/LFA-1 signaling pathway. Our findings uncovered an unappreciated paracrine mechanism how cancer cell-derived BCL6 assists cancer cell immune evasion, and highlighted the role of CD4+T cells in HCC immune surveillance.

2.
Nutrients ; 16(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39064732

RESUMEN

Bone metabolism is a process in which osteoclasts continuously clear old bone and osteoblasts form osteoid and mineralization within basic multicellular units, which are in a dynamic balance. The process of bone metabolism is affected by many factors, including diet. Reasonable dietary patterns play a vital role in the prevention and treatment of bone-related diseases. In recent years, dietary patterns have changed dramatically. With the continuous improvement in the quality of life, high amounts of sugar, fat and protein have become a part of people's daily diets. However, people have gradually realized the importance of a healthy diet, intermittent fasting, calorie restriction, a vegetarian diet, and moderate exercise. Although these dietary patterns have traditionally been considered healthy, their true impact on bone health are still unclear. Studies have found that caloric restriction and a vegetarian diet can reduce bone mass, the negative impact of a high-sugar and high-fat dietary (HSFD) pattern on bone health is far greater than the positive impact of the mechanical load, and the relationship between a high-protein diet (HPD) and bone health remains controversial. Calcium, vitamin D, and dairy products play an important role in preventing bone loss. In this article, we further explore the relationship between different dietary patterns and bone health, and provide a reference for how to choose the appropriate dietary pattern in the future and for how to prevent bone loss caused by long-term poor dietary patterns in children, adolescents, and the elderly. In addition, this review provides dietary references for the clinical treatment of bone-related diseases and suggests that health policy makers should consider dietary measures to prevent and treat bone loss.


Asunto(s)
Huesos , Humanos , Huesos/metabolismo , Dieta , Densidad Ósea , Dieta Saludable/métodos , Dieta Vegetariana , Restricción Calórica , Vitamina D/administración & dosificación , Calcio de la Dieta/administración & dosificación , Conducta Alimentaria/fisiología , Femenino , Niño , Masculino , Dieta Rica en Proteínas , Patrones Dietéticos
3.
Phytomedicine ; 132: 155890, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39033726

RESUMEN

BACKGROUND: Reactive Oxygen Species (ROS) is a key factor in the pathogenesis of osteoporosis (OP) primarily characterized by excessive osteoclast activity. Active fraction of Polyrhachis vicina Rogers (AFPR) exerts antioxidant effects and possesses extensive promising therapeutic effects in various conditions, however, its function in osteoclastogenesis and OP is unknown. PURPOSE: The aim of this study is to elucidate the cellular and molecular mechanisms of AFPR in OP. STUDY DESIGN AND METHODS: CCK8 assay was used to evaluate the cell viability under AFPR treatment. TRAcP staining, podosome belts staining and bone resorption were used to test the effect of AFPR on osteoclastogenesis. Immunofluorescence staining was used to observe the effect of AFPR on ROS production. si-RNA transfection, coimmunoprecipitation and Western-blot were used to clarify the underlying mechanisms. Further, an ovariectomy (OVX) -induced OP mice model was used to identify the effect of AFPR on bone loss using Micro-CT scanning and histological examination. RESULTS: In the present study, AFPR inhibited osteoclast differentiation and bone resorption induced by nuclear factor-κB receptor activator (NF-κB) ligand (RANKL) in dose-/ time-dependent with no cytotoxicity. Meanwhile, AFPR decreased RANKL-mediated ROS levels and enhanced ROS scavenging enzymes. Mechanistically, AFPR promoted proteasomal degradation of TRAF6 by significantly upregulating its K48-linked ubiquitination, subsequently inhibiting NFATc1 activity. We further observed that tripartite motif protein 38 (TRIM38) could mediate the ubiquitination of TRAF6 in response to RANKL. Moreover, TRIM38 could negatively regulate the RANKL pathway by binding to TRAF6 and promoting K48-linked polyubiquitination. In addition, TRIM38 deficiency rescued the inhibition of AFPR on ROS and NFATc1 activity and osteoclastogenesis. In line with these results, AFPR reduced OP caused by OVX through ameliorating osteoclastogenesis. CONCLUSION: AFPR alleviates ovariectomized-induced bone loss via suppressing ROS and NFATc1 by targeting Trim38 mediated proteasomal degradation of TRAF6. The research offers innovative perspectives on AFPR's suppressive impact in vivo OVX mouse model and in vitro, and clarifies the fundamental mechanism.

4.
Biomed Pharmacother ; 177: 116933, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38901204

RESUMEN

Reactive oxidative species (ROS) generation triggers pyroptosis and induces development of inflammatory osteolysis. Hecogenin (HG) has anti-inflammatory and antioxidative property, but its effects on inflammatory osteolysis remains unclear. In our study, we investigated the mechanism of HG on pyroptosis and its effect on inflammatory osteolysis in vitro and in vivo. The impact of HG on osteoclastogenesis was evaluated using cytotoxicity, TRAcP staining and bone resorption assays. The RNA-sequencing was employed to identify potential signaling pathways, and then RT-qPCR, western blot, immunofluorescence, and ELISA were used to verify. To determine the protective effect of HG in vivo, Lipopolysaccharide (LPS)-induced animal models were utilized, along with micro-CT and histological examination. HG suppressed RANKL-induced osteoclast differentiation, bone resorption, NFATc1 activity and downstream factors. RNA-sequencing results showed that HG inhibited osteoclastogenesis by modulating the inflammatory response and macrophage polarization. Furthermore, HG inhibited the NF-κB pathway, and deactivated the NLRP3 inflammasome. HG activated the expression of nuclear factor E2-related factor 2 (Nrf2) to eliminate ROS generation. Importantly, the inhibitory effect of HG on NLRP3 inflammasome could be reversed by treatment with the Nrf2 inhibitor ML385. In vivo, HG prevented the mice against LPS-induced osteolysis by suppressing osteoclastogenesis and inflammatory factors. In conclusion, HG could activate Nrf2 to eliminate ROS generation, inactivate NLRP3 inflammasome and inhibit pyroptosis, thereby suppressing osteoclastogenesis in vitro and alleviating inflammatory osteolysis in vivo, which indicating that HG might be a promising candidate to treat inflammatory osteolysis.


Asunto(s)
Lipopolisacáridos , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2 , Proteína con Dominio Pirina 3 de la Familia NLR , Osteoclastos , Osteólisis , Piroptosis , Especies Reactivas de Oxígeno , Animales , Piroptosis/efectos de los fármacos , Osteólisis/inducido químicamente , Osteólisis/tratamiento farmacológico , Osteólisis/metabolismo , Osteólisis/patología , Especies Reactivas de Oxígeno/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteoclastos/patología , Masculino , Transducción de Señal/efectos de los fármacos , Células RAW 264.7 , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Antiinflamatorios/farmacología , Ligando RANK/metabolismo
5.
Chemosphere ; 358: 142208, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38704042

RESUMEN

Metal nanomaterials (MNMs) have been released into the environment during their usage in various products, and their environmental behaviors directly impact their toxicity. Numerous environmental factors potentially affect the behaviors and toxicity of MNMs with dissolved organic matter (DOM) playing the most essential role. Abundant facts showing contradictory results about the effects of DOM on MNMs, herein the occurrence of DOM on the environmental process change of MNMs such as dissolution, dispersion, aggregation, and surface transformation were summarized. We also reviewed the effects of MNMs on organisms and their mechanisms in the environment such as acute toxicity, oxidative stress, oxidative damage, growth inhibition, photosynthesis, reproductive toxicity, and malformation. The presence of DOM had the potential to reduce or enhance the toxicity of MNMs by altering the reactive oxygen species (ROS) generation, dissolution, stability, and electrostatic repulsion of MNMs. Furthermore, we summarized the factors that affected different toxicity including specific organisms, DOM concentration, DOM types, light conditions, detection time, and production methods of MNMs. However, the more detailed mechanism of interaction between DOM and MNMs needs further investigation.


Asunto(s)
Nanoestructuras , Nanoestructuras/toxicidad , Nanoestructuras/química , Metales/toxicidad , Metales/química , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Compuestos Orgánicos/toxicidad , Compuestos Orgánicos/química , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Contaminantes Ambientales/toxicidad , Contaminantes Ambientales/química , Sustancias Húmicas
6.
J Orthop Translat ; 45: 178-187, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38549807

RESUMEN

Background: Glucocorticoid-induced osteonecrosis of the femoral head (GIONFH) is a common bone and joint disease. There is currently a lack of effective treatment for GIONFH, and the disease progression may lead to total hip arthroplasty (THA). The exact mechanism of GIONFH pathogenesis remains unsettled, and emerging evidence indicates that the overactivation of osteoclasts plays a pivotal role in the occurrence and progression of this condition. Our previous study has shown that cycloastragenol (CAG), a triterpenoid saponin with multiple bioactivities, is a natural osteoclast inhibitor and has a protective effect on bone loss. However, its effect on GIONFH remains unclear. Methods: In this study, methylprednisolone (MPS) (20 mg/kg) was administered via gluteal muscle injection to female Sprague-Dawley (SD) rats to induce GIONFH, and different doses of CAG (5 and 15 mg/kg) were dispensed intraperitoneally for intervention. Micro-CT screening and angiography were applied to determine the shaping of necrotic lesions, the loss of trabecular bone, and the change in the local blood supply. The molecular mechanism was established by Real-time qPCR and Western blotting. Hematoxylin and eosin (H&E) staining was performed to identify empty lacunae in the femoral head. Results: CAG treatment shanked the necrotic lesion area, inhibited the trabecular bone loss, and improved the local blood supply in the femoral head. In addition, CAG medication lowered the ratio of Tnfsf11 (encoding RANKL) to Tnfrsf11b (encoding OPG) and the expression of osteoclast-specific genes, including Acp5 and Ctsk. Consistently, CAG treatment exhibited a dose-dependent weakening effect on the expression of osteoclastogenesis and bone resorption-related proteins, including TRAP, CTSK, and MMP9. CAG addition also alleviated the occurrence of empty lacunae in the subchondral region. Conclusion: Our discoveries demonstrate that CAG is a potential option for hip preservation therapy in GIONFH patients. Translational potential of this article: The protective effect of CAG on rats with GIONFH can be translated into clinical use.

7.
Sci Total Environ ; 924: 171660, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38490428

RESUMEN

Metallic nanomaterials (MNMs) possess unique properties that have led to their widespread application in fields such as electronics and medicine. However, concerns about their interactions with environmental factors and potential toxicity to aquatic life have emerged. There is growing evidence suggesting MNMs can have detrimental effects on aquatic ecosystems, and are potential for bioaccumulation and biomagnification in the food chain, posing risks to higher trophic levels and potentially humans. While many studies have focused on the general ecotoxicity of MNMs, fewer have delved into their trophic transfer within aquatic food chains. This review highlights the ecotoxicological effects of MNMs on aquatic systems via waterborne exposure or dietary exposure, emphasizing their accumulation and transformation across the food web. Biomagnification factor (BMF), the ratio of the contaminant concentration in predator to that in prey, was used to evaluate the biomagnification due to the complex nature of aquatic food chains. However, most current studies have BMF values of less than 1 indicating no biomagnification. Factors influencing MNM toxicity in aquatic environments include nanomaterial properties, ion variations, light, dissolved oxygen, and pH. The multifaceted interactions of these variables with MNM toxicity remain to be fully elucidated. We conclude with recommendations for future research directions to mitigate the adverse effects of MNMs in aquatic ecosystems and advocate for a cautious approach to the production and application of MNMs.


Asunto(s)
Nanoestructuras , Contaminantes Químicos del Agua , Humanos , Ecosistema , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Cadena Alimentaria , Nanoestructuras/toxicidad , Estado Nutricional
8.
Cell Death Discov ; 10(1): 86, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368392

RESUMEN

The key target for treating inflammatory osteolysis is osteoclasts. In an inflammatory environment, osteoclast differentiation increases, and bone resorption is enhanced. Periplogenin (Ppg) is a traditional Chinese medicine. It has anti-inflammatory and antitumor effects, but its impact on inflammatory osteolysis is unknown. This study found that Ppg prevented LPS-induced skull osteolysis by inhibiting the expression of inflammatory cytokines and osteoclast production. In vitro, Ppg blocked the RANKL-induced generation of osteoclasts, the development of pseudopodia bands, and bone resorption. Ppg also attenuated the expression of NFATc1, c-Fos, CTSK, and Atp6v0d2 proteins by inhibiting the NFATc1 signaling pathway. In addition, Ppg inhibited the expression of osteoclast-specific genes, including NFATc1, c-Fos, CTSK, Atp6v0d2, and Mmp9. Moreover, Ppg also inhibited NF-κB and MAPK pathways. In vivo, Ppg reduced the number of osteoclasts on the surface of the bone and suppressed LPS-induced osteolysis of the skull. These outcomes suggest that Ppg can serve as a new alternative therapy for treating inflammatory osteolysis by inhibiting inflammation and osteoclasts.

9.
Mater Today Bio ; 24: 100919, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38298888

RESUMEN

Diabetes causes a loss of sensation in the skin, so diabetics are prone to burns when using heating devices. Diabetic scalded skin is often difficult to heal due to the microenvironment of high glucose, high oxidation, and low blood perfusion. The treatment of diabetic scald mainly focuses on three aspects: 1) promote the formation of the epithelium; 2) promote angiogenesis; and 3) maintain intracellular homeostasis. In response to these three major repair factors, we developed a cadherin-responsive hydrogel combined with FGF21 and dental pulp stem cells (DPSCs) to accelerate epithelial formation by recruiting cadherin to the epidermis and promoting the transformation of N cadherin to E cadherin; promoting angiogenesis to increase wound blood perfusion; regulating the stability of lysosomal and activating autophagy to maintain intracellular homeostasis in order to comprehensively advance the recovery of diabetic scald.

10.
Phytother Res ; 38(4): 1971-1989, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38358727

RESUMEN

BACKGROUND AND AIM: Osteoporosis, a systemic metabolic bone disease, is characterized by the decline of bone mass and quality due to excessive osteoclast activity. Currently, drug-targeting osteoclasts show promising therapy for osteoporosis. In this study, we investigated the effect of cichoric acid (CA) on receptor activator of nuclear kappa-B ligand (RANKL)-induced osteoclastogenesis and the bone loss induced by ovariectomy in mice. EXPERIMENTAL PROCEDURE: Molecular docking technologies were employed to examine the interaction between CA and RANKL. CCK8 assay was used to evaluate the cell viability under CA treatment. TRAcP staining, podosome belt staining, and bone resorption assays were used to test the effect of CA on osteoclastogenesis and osteoclast function. Further, an OVX-induced osteoporosis mice model was employed to identify the effect of CA on bone loss using micro-CT scanning and histological examination. To investigate underlying mechanisms, network pharmacology was applied to predict the downstream signaling pathways, which were verified by Western blot and immunofluorescence staining. KEY RESULTS: The molecular docking analysis revealed that CA exhibited a specific binding affinity to RANKL, engaging multiple binding sites. CA inhibited RANKL-induced osteoclastogenesis and bone resorption without cytotoxic effects. Mechanistically, CA suppressed RANKL-induced intracellular reactive oxygen species, nuclear factor-kappa B, and mitogen-activated protein kinase pathways, followed by abrogated nuclear factor activated T-cells 1 activity. Consistent with this finding, CA attenuated post-ovariectomy-induced osteoporosis by ameliorating osteoclastogenesis. CONCLUSIONS AND IMPLICATIONS: CA inhibited osteoclast activity and bone loss by targeting RANKL. CA might represent a promising candidate for treating osteoclast-related diseases, such as osteoporosis.


Asunto(s)
Resorción Ósea , Ácidos Cafeicos , Osteoporosis , Succinatos , Animales , Femenino , Humanos , Ratones , Resorción Ósea/prevención & control , Diferenciación Celular , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , FN-kappa B/metabolismo , Osteoclastos , Osteogénesis , Osteoporosis/patología , Ovariectomía/efectos adversos , Ligando RANK/metabolismo
11.
J Cell Physiol ; 239(5): e31214, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38358001

RESUMEN

Alleviating bone loss is an essential way to prevent osteoporotic fractures. Proper exercise improves bone density without the side effects of long-term medications, but the mechanism is unclear. Our study explored the role of Antxr1/LncRNA H19/Wnt/ß-catenin axis in the process of exercise-mediated alleviation of bone loss. Here we discovered that moderate-intensity treadmill exercise alleviates bone loss caused by ovariectomy and ameliorates bone strength accompanied by an increased lncRNA H19 expression. Concomitantly, Antxr1, a mechanosensitive protein was found downregulated by exercise but upregulated by ovariectomy. Interestingly, knockdown expression of Antxr1 increased lncRNA H19 expression and Wnt/ß-catenin signaling pathway in bone marrow mesenchymal stem cells, whereas overexpression of Antxr1 decreased lncRNA H19 expression and Wnt/ß-catenin signaling pathway. Hence, our study demonstrates the regulation of Antxr1/LncRNA H19/Wnt/ß-catenin axis in the process of mechanical strain-induced osteogenic differentiation, which provides further mechanistic insight into the role of mechanical regulation in bone metabolism.


Asunto(s)
Proteínas de Microfilamentos , Osteogénesis , ARN Largo no Codificante , Receptores de Superficie Celular , Estrés Mecánico , Vía de Señalización Wnt , beta Catenina , Animales , Femenino , Ratones , beta Catenina/metabolismo , beta Catenina/genética , Densidad Ósea/genética , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/genética , Osteoporosis/genética , Osteoporosis/metabolismo , Osteoporosis/patología , Ovariectomía/efectos adversos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Vía de Señalización Wnt/genética , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/metabolismo , Receptores de Superficie Celular/metabolismo
13.
Microbiol Res ; 282: 127626, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38330817

RESUMEN

Bloodstream infection (BSI) refers to the infection of blood by pathogens. Severe immune response to BSI can lead to sepsis, a systemic infection leading to multiple organ dysfunction, coupled with drug resistance, mortality, and limited clinical treatment options. This work aims to further investigate the new interplay between bacterial exocrine regulatory protein and host immune cells in the context of highly drug-resistant malignant BSI. Whether interfering with related regulatory signaling pathways can reverse the inflammatory disorder of immune cells. In-depth analysis of single-cell sequencing results in Septic patients for potential immunodeficiency factors. Analysis of key proteins enriched by host cells and key pathways using proteomics. Cell models and animal models validate the pathological effects of DnaK on T cells, MAITs, macrophages, and osteoclasts. The blood of patients was analyzed for the immunosuppression of T cells and MAITs. We identified that S. maltophilia-DnaK was enriched in immunodeficient T cells. The activation of the JAK2/STAT1 axis initiated the exhaustion of T cells. Septic patients with Gram-negative bacterial infections exhibited deficiencies in MAITs, which correspond to IFN-γ. Cellular and animal experiments confirmed that DnaK could facilitate MAIT depletion and M1 polarization of macrophages. Additionally, Fludarabine mitigated M1 polarization of blood, liver, and spleen in mice. Interestingly, DnaK also repressed osteoclastogenesis of macrophages stimulated by RANKL. S.maltophilia-DnaK prompts the activation of the JAK2/STAT1 axis in T cells and the M1 polarization of macrophages. Targeting the DnaK's crosstalk can be a potentially effective approach for treating the inflammatory disorder in the broad-spectrum drug-resistant BSI.


Asunto(s)
Antiinfecciosos , Sepsis , Humanos , Animales , Ratones , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Macrófagos , Hígado , Antiinfecciosos/metabolismo , Proteínas Bacterianas/metabolismo , Linfocitos T/metabolismo , Factor de Transcripción STAT1/metabolismo , Janus Quinasa 2/metabolismo
14.
J Environ Manage ; 354: 120429, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38387344

RESUMEN

During the COVID-19 pandemic, an abundance of plastic face masks has been consumed and disposed of in the environment. In addition, substantial amounts of plastic mulch film have been used in intensive agriculture with low recovery. Butyl benzyl phthalate (BBP) and TiO2 nanomaterials (nTiO2) are widely applied in plastic products, leading to the inevitable release of BBP and nTiO2 into the soil system. However, the impact of co-exposure of BBP and nTiO2 at low concentrations on earthworms remains understudied. In the present study, transcriptomics was applied to reveal the effects of individual BBP and nTiO2 exposures at a concentration of 1 mg kg-1, along with the combined exposure of BBP and nTiO2 (1 mg kg-1 BBP + 1 mg kg-1 nTiO2 (anatase)) on Metaphire guillelmi. The result showed that BBP and nTiO2 exposures have the potential to induce neurodegeneration through glutamate accumulation, tau protein, and oxidative stress in the endoplasmic reticulum and mitochondria, as well as metabolism dysfunction. The present study contributes to our understanding of the toxic mechanisms of emerging contaminants at environmentally relevant levels and prompts consideration of the management of BBP and nTiO2 within the soil ecosystems.


Asunto(s)
Nanoestructuras , Oligoquetos , Ácidos Ftálicos , Animales , Humanos , Oligoquetos/genética , Ecosistema , Pandemias , Titanio , Suelo , Perfilación de la Expresión Génica
15.
Biomed Pharmacother ; 171: 116166, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38244329

RESUMEN

Osteoporosis is a systemic disease characterized by an imbalance in bone homeostasis, where osteoblasts fail to fully compensate for the bone resorption induced by osteoclasts. Corylifol A, a flavonoid extracted from Fructus psoraleae, has been identified as a potential treatment for this condition. Predictions from network pharmacology and molecular docking studies suggest that Corylifol A exhibits strong binding affinity with NFATc1, Nrf2, PI3K, and AKT1. Empirical evidence from in vivo experiments indicates that Corylifol A significantly mitigates systemic bone loss induced by ovariectomy by suppressing both the generation and activation of osteoclasts. In vitro studies further showed that Corylifol A inhibited the activation of PI3K-AKT and MAPK pathways and calcium channels induced by RANKL in a time gradient manner, and specifically inhibited the phosphorylation of PI3K, AKT, GSK3 ß, ERK, CaMKII, CaMKIV, and Calmodulin. It also diminishes ROS production through Nrf2 activation, leading to a decrease in the expression of key regulators such as NFATcl, C-Fos, Acp5, Mmp9, and CTSK that are involved in osteoclastogenesis. Notably, our RNA-seq analysis suggests that Corylifol A primarily impacts mitochondrial energy metabolism by suppressing oxidative phosphorylation. Collectively, these findings demonstrate that Corylifol A is a novel inhibitor of osteoclastogenesis, offering potential therapeutic applications for diseases associated with excessive bone resorption.


Asunto(s)
Resorción Ósea , Flavonas , Osteogénesis , Femenino , Humanos , Animales , Ratones , Especies Reactivas de Oxígeno/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Simulación del Acoplamiento Molecular , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Osteoclastos/metabolismo , Resorción Ósea/metabolismo , Ovariectomía , Ligando RANK/metabolismo , Factores de Transcripción NFATC/metabolismo , Ratones Endogámicos C57BL , Diferenciación Celular
16.
Cell Prolif ; 57(1): e13535, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37551727

RESUMEN

Periodontal disease and arthroplasty prosthesis loosening and destabilization are both associated with osteolysis, which is predominantly caused by abnormal bone resorption triggered by pro-inflammatory cytokines. Osteoclasts (OCs) are critical players in the process. Concerns regarding the long-term efficacy and side effects of current frontline therapies, however, remain. Alternative therapies are still required. The aim of this work was to investigate the involvement of Tenacissoside H (TDH) in RANKL-mediated OC differentiation, as well as inflammatory osteolysis and associated processes. In vitro, bone marrow-derived macrophages (BMMs) cultured with RANKL and M-CSF were used to detect TDH in the differentiation and function of OCs. Real-time quantitative PCR was used to measure the expression of specific genes and inflammatory factors in OCs. Western blot was used to identify NFATc1, IKK, NF-κB, MAPK pathway, and oxidative stress-related components. Finally, an LPS-mediated calvarial osteolysis mouse model was employed to explore TDH's role in inflammatory osteolysis. The results showed that in vivo TDH inhibited the differentiation and resorption functions of OCs and down-regulated the transcription of osteoclast-specific genes, as well as Il-1ß, Il-6 and Tnf-α. In addition, TDH inhibited the IKK and NF-κB signalling pathways and down-regulated the level of ROS. In vivo studies revealed that TDH improves the bone loss caused by LPS. TDH may be a new candidate or treatment for osteoclast-associated inflammatory osteolytic disease.


Asunto(s)
Osteólisis , Animales , Ratones , Osteólisis/inducido químicamente , FN-kappa B/metabolismo , Lipopolisacáridos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Osteoclastos/metabolismo , Ligando RANK/metabolismo , Diferenciación Celular , Factores de Transcripción NFATC/metabolismo
17.
Biotechnol J ; 19(1): e2300031, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37750185

RESUMEN

Chondrocyte apoptosis is an important pathological feature of osteoarthritis (OA). Excessive apoptosis of chondrocytes disrupts the dynamic balance of cell proliferation and apoptosis, with a marked reduction in chondrocytes and cartilage matrix disintegration, which represents the main pathology of OA. Caspases, especially Caspase-3, play a central role in cell apoptosis. In this study, a lentiviral vector was used to transduce caspase-3 short hairpin RNA (shRNA) into rat chondrocytes (RCs), and the apoptotic and phenotypic genes of RCs were analyzed using real-time PCR and western blotting in vitro. In addition, in vivo intra-articular injection of Caspase-3 shRNA lentivirus was performed in a surgically induced OA rat model. Our results showed that Caspase-3 gene silencing could down-regulate the TNF-α-mediated inflammatory gene expression of TNFR1, FADD, and IL-1ß, apoptotic gene expression of APAF1, Caspase-3, and Caspase-9, thereby attenuating the apoptotic pathway in vitro. Caspase-3 gene silencing also attenuated TNF-α-mediated decreased gene expression of ACAN, Col1-a1, and Col2-a1. Furthermore, Caspase-3 gene silencing could effectively reduce the OARSI score, and gene expression of Caspase-3, Caspase-9, MMP13, and TNF-α in a surgically induced OA rat model. Caspase-3 gene silencing may serve as a novel therapeutic strategy for cartilage injury and OA.


Asunto(s)
Cartílago Articular , Osteoartritis , Ratas , Animales , Condrocitos , ARN Interferente Pequeño/genética , Caspasa 9/genética , Caspasa 9/metabolismo , Caspasa 9/farmacología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Caspasa 3/genética , Caspasa 3/metabolismo , Caspasa 3/farmacología , Ratas Sprague-Dawley , Lentivirus/genética , Cartílago Articular/metabolismo , Cartílago Articular/patología , Osteoartritis/genética , Osteoartritis/terapia , Apoptosis/genética , Silenciador del Gen
18.
Environ Res ; 242: 117820, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38048867

RESUMEN

Engineered nanomaterials (ENMs) are inevitably released into the environment with the exponential application of nanotechnology. Parts of ENMs eventually accumulate in the soil environment leading to potential adverse effects on soil ecology, crop production, and human health. Therefore, the safety application of ENMs on soil has been widely discussed in recent years. More detailed safety information and potential soil environmental risks are urgently needed. However, most of the studies on the environmental effects of metal-based ENMs have been limited to single-species experiments, ecosystem processes, or abiotic processes. The present review formulated the source and the behaviors of the ENMs in soil, and the potential effects of single and co-exposure ENMs on soil microorganisms, soil fauna, and plants were introduced. The toxicity mechanism of ENMs to soil organisms was also reviewed including oxidative stress, the release of toxic metal ions, and physical contact. Soil properties affect the transport, transformation, and toxicity of ENMs. Toxic mechanisms of ENMs include oxidative stress, ion release, and physical contact. Joint toxic effects occur through adsorption, photodegradation, and loading. Besides, future research should focus on the toxic effects of ENMs at the food chain levels, the effects of ENMs on plant whole-lifecycle, and the co-exposure and long-term toxicity effects. A fast and accurate toxicity evaluation system and model method are urgently needed to solve the current difficulties. It is of great significance for the sustainable development of ENMs to provide the theoretical basis for the ecological risk assessment and environmental management of ENMs.


Asunto(s)
Ecosistema , Nanoestructuras , Humanos , Suelo , Nanoestructuras/toxicidad , Nanotecnología , Plantas
19.
Exp Neurol ; 371: 114577, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37863305

RESUMEN

BACKGROUND: Early brain injury (EBI) refers to a severe brain injury that occurs within hours to days after subarachnoid hemorrhage (SAH). Neuronal damage in EBI is considered a key factor leading to poor prognosis. Currently, our understanding of the mechanisms of neuronal damage, such as neuronal autophagy, is still incomplete. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key enzyme in metabolism and plays an important role in autophagy. Based on this, this study will further explore the regulation of autophagy by GAPDH after SAH, which may provide a new treatment strategy for improving the prognosis of SAH patients. METHODS: The rat SAH model was established by endovascular puncturing, and the trend of autophagy in hippocampal neurons at different time points was discussed. Additionally, an in vitro SAH model was created using the oxygenated hemoglobin and hippocampal neuronal HT22 cell line. Through siRNA and overexpression adenovirus techniques, we further investigated the relationship between the key enzyme GAPDH and autophagy in the in vitro SAH model. RESULTS: We observed significant neuronal damage in the hippocampus 24 h after SAH, and the proteomics showed significant enrichment of autophagy-related pathways at this time point. Further studies showed that the expression of LC3 and Beclin1 peaked at 24 h, and the nuclear translocation of GAPDH occurred simultaneously with SAH-induced neuronal autophagy. Our in vitro SAH model confirmed the role of GAPDH in regulating the level of autophagy in HT22 cells. Knockdown of GAPDH significantly reduced the level of autophagy, while overexpression of GAPDH increased the level of autophagy. CONCLUSION: This study shows the trend of autophagy in hippocampal neurons after SAH, and reveals the regulatory role of GAPDH in SAH-induced autophagy. However, further studies are needed to reveal the exact mechanism of GAPDH in the nuclear translocation regulation of autophagy and validate in animal models.


Asunto(s)
Lesiones Encefálicas , Hemorragia Subaracnoidea , Ratas , Humanos , Animales , Hemorragia Subaracnoidea/metabolismo , Ratas Sprague-Dawley , Modelos Animales de Enfermedad , Lesiones Encefálicas/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Autofagia/fisiología , Apoptosis/fisiología
20.
Biochem Pharmacol ; 218: 115895, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38084677

RESUMEN

Reactive Oxygen Species (ROS) play an essential role in the pathogenesis of osteoporosis mainly characterized by excessive osteoclasts (OCs) activity. OCs are rich in mitochondria for energy support, which is a major source of total ROS. Tussilagone (TSG), a natural Sesquiterpenes from the flower of Tussilago farfara, has plentiful beneficial pharmacological characteristics with anti-inflammatory and anti-oxidative activity, but its effects and mechanism in osteopathology are still unclear. In our study, we investigated the regulation of ROS generated from the mitochondria in OCs. We found that TSG inhibited OCs differentiation and bone resorption without any cytotoxicity. Mechanistically, TSG reduced RANKL-mediated total ROS level by down-regulating intracellular ROS production and mitochondrial function, leading to the suppression of NFATc1 transcription. We also found that nuclear factor erythroid 2-related factor 2 (Nrf2) could enhance ROS scavenging enzymes in response to RANKL-induced oxidative stress. Furthermore, TSG up-regulated the expression of Nrf2 by inhibiting its proteosomal degradation. Interestingly, Nrf2 deficiency reversed the suppressive effect of TSG on mitochondrial activity and ROS signaling in OCs. Consistent with this finding, TSG attenuated post-ovariectomy (OVX)- and lipopolysaccharide (LPS) induced bone loss by ameliorating osteoclastogenesis. Taken together, TSG has an anti-bone resorptive effect by modulating mitochondrial function and ROS production involved Nrf2 activation.


Asunto(s)
Resorción Ósea , Sesquiterpenos , Femenino , Humanos , Osteogénesis , Especies Reactivas de Oxígeno/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Osteoclastos , Sesquiterpenos/farmacología , Sesquiterpenos/metabolismo , Resorción Ósea/metabolismo , Ligando RANK/farmacología , Diferenciación Celular , FN-kappa B/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...