Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(26): 8008-8016, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38912749

RESUMEN

Piezoelectric dynamic therapy (PzDT) is an effective method of tumor treatment by using piezoelectric polarization to generate reactive oxygen species. In this paper, two-dimensional Cu-doped BiOCl nanosheets with surface vacancies are produced by the photoetching strategy. Under ultrasound, a built-in electric field is generated to promote the electron and hole separation. The separated carriers achieve O2 reduction and GSH oxidation, inducing oxidative stress. The bandgap of BiOCl is narrowed by introducing surface oxygen vacancies, which act as charge traps and facilitate the electron and hole separation. Meanwhile, Cu doping induces chemodynamic therapy and depletes GSH via the transformation from Cu(II) to Cu(I). Both in vivo and in vitro results confirmed that oxidative stress can be enhanced by exogenous ultrasound stimulation, which can cause severe damage to tumor cells. This work emphasizes the efficient strategy of doping engineering and defect engineering for US-activated PzDT under exogenous stimulation.


Asunto(s)
Cobre , Nanoestructuras , Oxígeno , Oxígeno/química , Cobre/química , Humanos , Nanoestructuras/química , Nanoestructuras/uso terapéutico , Animales , Ratones , Neoplasias/terapia , Estrés Oxidativo/efectos de los fármacos , Línea Celular Tumoral , Bismuto/química , Especies Reactivas de Oxígeno/metabolismo , Glutatión/química
2.
Food Sci Nutr ; 12(2): 830-842, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38370038

RESUMEN

Infectious oral diseases are longstanding global public health concerns. However, traditional medical approaches to address these diseases are costly, traumatic, and prone to relapse. Here, we propose a foodborne prophylactic strategy using aloin to safeguard dental collagen. The effect of aloin on the stability of dental collagen was evaluated by treating dentin with a solution containing aloin (0.1 mg/mL) for 2 min. This concentration is comparable to the natural aloin content of edible aloe. Furthermore, we investigated the mechanisms underlying the interactions between aloin and dentin collagen. Our findings, obtained through fluorescence spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy, Gaussian peak fitting, circular dichroism spectroscopy, and X-ray diffraction, revealed that aloin interacts with dental collagen through noncovalent bonding, specifically hydrogen bonding in situ. This interaction leads to a reduction in the distance between molecules and an increase in the proportion of stable α-helical chains in the dental collagen. The ultimate tensile strength and thermogravimetric analysis demonstrated that dental collagen treated with aloin exhibited improved mechanical strength and thermostability. Additionally, the release of hydroxyproline, cross-linked carboxy-terminal telopeptide of type I collagen, and C-terminal cross-linked telopeptide of type I collagen, along with weight loss, indicated an enhancement in the enzymatic stability of dental collagen. These findings suggest that aloin administration could be a daily, nondestructive, and cost-effective strategy for managing infectious oral diseases.

3.
Dent Mater ; 39(5): 455-462, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37002165

RESUMEN

OBJECTIVES: To evaluate the benefits of a novel dentin-bonding primer, namely, isocyanate-terminated urethane methacrylate precursor (UMP), which can form covalent bonds with demineralized dentin collagen. METHODS: The synthesized and purified UMP monomer was characterized and tested its effects on the degree of conversion (DC) and wettability of an acetone-based dental adhesive. Then UMP primers of different concentrations were formulated and used to prepare adhesive specimens, which were compared with solvent-treated groups. Primer-treated specimens with and without aging were also compared. To evaluate the bonding interface, microtensile strength tests, nano-indentation tests and nanoleakage- eavaluation were performed using a field-emission scanning electron microscope and nano-indenter. Data were analyzed using SPSS 20.0 software with significance set at α = 0.05 using one-way analysis of variance (ANOVA) and two-way ANOVA to characterize the effects of the primer. RESULTS: Treatment with the UMP primer promoted the DC and wettability of the adhesive on the demineralized dentin surface (P < 0.05); it also increased the bond strength of the aged dentin bonding interface (P < 0.05). Nanoleakage was reduced; the bonding interface became more stable, and the continuity and strength of the hybrid layer improved (P < 0.05) following UMP treatment. The application of 5 mM UMP as a primer for dentin bonding could lead to a stable bonding interface and long-lasting bonding effects. SIGNIFICANCE: The use of 5 mM UMP primer developed in this study could improve dentin bonding durability and has excellent clinical application prospects.


Asunto(s)
Recubrimiento Dental Adhesivo , Cementos Dentales , Dentina/química , Recubrimientos Dentinarios/química , Ensayo de Materiales , Metacrilatos/química , Microscopía Electrónica de Rastreo , Cementos de Resina/química , Propiedades de Superficie , Resistencia a la Tracción , Uretano
4.
Nano Res ; 16(4): 5247-5255, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36532602

RESUMEN

Stable and bioactive material-tissue interface (MTF) basically determines the clinical applications of biomaterials in wound healing, sustained drug release, and tissue engineering. Although many inorganic nanomaterials have been widely explored to enhance the stability and bioactivity of polymer-based biomaterials, most are still restricted by their stability and biocompatibility. Here we demonstrate the enhanced bioactivity and stability of polymer-matrix bio-composite through coupling multiscale material-tissue interfacial interactions with atomically thin TiO2 nanosheets. Resin modified with TiO2 nanosheets displays improved mechanical properties, hydrophilicity, and stability. Also, we confirm that this resin can effectively stimulate the adhesion, proliferation, and differentiation into osteogenic and odontogenic lineages of human dental pulp stem cells using in vitro cell-resin interface model. TiO2 nanosheets can also enhance the interaction between demineralized dentinal collagen and resin. Our results suggest an approach to effectively up-regulate the stability and bioactivity of MTFs by designing biocompatible materials at the sub-nanoscale. Electronic Supplementary Material: Supplementary material (further details of fabrication and characterization of TiO2 NSs and TiO2-ARCs, the bioactivity evaluation of TiO2-ARCs on hDPSCs, and the measurement of interaction with demineralized dentin collagen) is available in the online version of this article at 10.1007/s12274-022-5153-1.

5.
Ann Transl Med ; 10(14): 792, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35965794

RESUMEN

Background: To investigate the identification of spalt-like transcription factor 4 (SALL4) in oral squamous cell carcinoma (OSCC). Methods: Recombinant cells loaded with miRNA expression cells were used to transform Tca8113 cells. Simple Tca8113 cells were used as the control group. We detected SALL4 messenger RNA (mRNA) before and after transfection by reverse transcription polymerase chain reaction (RT-PCR) and protein immunoblotting (western blot) A and protein expression. A dual luciferase reporter system was used to verify the targeted regulation of SALL4 and identify miRNA-S to test the effect of miRNA related to SALL4 regulation on the invasion and metastatic ability of Tca8113 cells. Results: The expression of SALL4 mRNA in Tca8113 cells was higher than that in the downregulated and control groups, respectively (P<0.05); there was no difference in Tca8113 cells between the upregulated and downregulated groups (P>0.05). Dual luciferase reporter system showed that the identified miRNA was miRNA-S; there were no differences in migration and invasion of Tca8113 cells between the up- and down-regulated groups (P>0.05). Conclusions: In human OSCC, SALL4 regulation-related miRNAs are poorly expressed and can inhibit the invasion and metastasis of tumor cells, which is expected to become a new therapeutic target for OSCC.

6.
J Dent ; 116: 103888, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34762990

RESUMEN

OBJECTIVES: The humid oral environment adversely affects the interaction between a functionalised primer and dentine collagen after acid-etching. Robust adhesion of marine mussels to their wet substrates instigates the quest for a strategy that improves the longevity of resin-dentine bonds. In the present study, an etching strategy based on the incorporation of biomimetic dopamine methacrylamide (DMA) as a functionalised primer into phosphoric acid etchant was developed. The mechanism and effect of this DMA-containing acid-etching strategy on bond durability were examined. METHODS: Etchants with different concentrations of DMA (1, 3 or 5 mM) were formulated and tested for their demineralisation efficacy. The interaction between DMA and dentine collagen, the effect of DMA on collagen stability and the collagenase inhibition capacity of the DMA-containing etchants were evaluated. The effectiveness of this new etching strategy on resin-dentine bond durability was investigated. RESULTS: All etchants were capable of demineralising dentine and exposing the collagen matrix. The latter strongly integrated with DMA via covalent bond, hydrogen bond and Van der Waals' forces. These interactions significantly improve collagen stability and inhibited collagenase activity. Application of the etchant containing 5 mM DMA achieved the most durable bonding interface. CONCLUSION: Dopamine methacrylamide interacts with dentine collagen in a humid environment and improves collagen stability. The monomer effectively inactivates collagenase activity. Acid-etching with 5 mM DMA-containing phosphoric acid has the potential to prolong the longevity of bonded dental restorations without compromising clinical operation time. CLINICAL SIGNIFICANCE: The use of 5 mM dopamine methacrylamide-containing phosphoric acid for etching dentine does not require an additional clinical step and has potential to improve the adhesive performance of bonded dental restorations.


Asunto(s)
Bivalvos , Recubrimiento Dental Adhesivo , Grabado Ácido Dental , Animales , Cementos Dentales/metabolismo , Dentina/metabolismo , Recubrimientos Dentinarios/química , Ensayo de Materiales , Ácidos Fosfóricos/química , Ácidos Fosfóricos/farmacología , Cementos de Resina/química , Propiedades de Superficie , Resistencia a la Tracción
7.
Cell Prolif ; 52(4): e12623, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31115100

RESUMEN

L-type voltage-gated calcium ion channels (L-VGCCs) have been demonstrated to be the mediator of several significant intracellular activities in excitable cells, such as neurons, chromaffin cells and myocytes. Recently, an increasing number of studies have investigated the function of L-VGCCs in non-excitable cells, particularly stem cells. However, there appear to be no systematic reviews of the relationship between L-VGCCs and stem cells, and filling this gap is prescient considering the contribution of L-VGCCs to the proliferation and differentiation of several types of stem cells. This review will discuss the possible involvement of L-VGCCs in stem cells, mainly focusing on osteogenesis mediated by mesenchymal stem cells (MSCs) from different tissues and neurogenesis mediated by neural stem/progenitor cells (NSCs). Additionally, advanced applications that use these channels as the target for tissue engineering, which may offer the hope of tissue regeneration in the future, will also be explored.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Calcio/metabolismo , Células Madre/metabolismo , Animales , Señalización del Calcio/fisiología , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Humanos , Osteogénesis/fisiología , Ingeniería de Tejidos/métodos
8.
Acta Biomater ; 83: 140-152, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30414487

RESUMEN

Commercially available dental adhesives fail to chemically unite the demineralized collagen matrix with resinous materials within the resin-dentin interface. Sub-micron separations between the collagen fibrils and polymerized resin provide the backdrop for bond deterioration. Here, novel isocyanate-terminated urethane methacrylate precursors (UMP) were synthesized with the capacity to bond chemically to dentin collagen via covalent and hydrogen bonds. Collagen grafted with UMP also copolymerized with other methacrylate resin monomers, thereby producing a monoblock of chemically-linked biocomposite. The viscosity, degree of conversion and biocompatibility of UMP are comparable with commercially available resin monomers. An experimental adhesive containing 40% UMP demonstrated co-polymerization capability, good infiltration capacity and achieved higher immediate bond strength to dentin than the control commercially available adhesive. Improvement of dentin bonding by incorporation of UMP into dentin adhesives justifies future evaluation of the potential of these UMP-based adhesives in extending the longevity of resin-dentin bonds. STATEMENT OF SIGNIFICANCE: Composite-adhesive restorations have become an indispensable treatment modality in contemporary restorative dentistry. While the inability of these adhesives to bond chemically with collagen undermines the bond quality. This study describes a novel isocyanate-terminated urethane multi methacrylate precursors (UMP) which can bridge dentinal matrix collagen with adhesive resin by covalent and hydrogen bonds. Furthermore, an experimental UMP-based adhesive shows better co-polymerization capability, good infiltration capacity and higher immediate bond strength than the putatively effective adhesive Single Bond 2. The new chemical bonding mechanism based on UMP would theoretically produce more stable bonding interface that are more resistant to degradation.


Asunto(s)
Colágeno/química , Pulpa Dental/metabolismo , Recubrimientos Dentinarios , Dentina/química , Células Madre/metabolismo , Uretano , Pulpa Dental/citología , Recubrimientos Dentinarios/química , Recubrimientos Dentinarios/farmacología , Humanos , Ensayo de Materiales , Células Madre/citología , Uretano/análogos & derivados , Uretano/química , Uretano/farmacología
9.
Chemistry ; 24(17): 4273-4278, 2018 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-29437258

RESUMEN

Visible-light-driven conversion of CO2 to CO and high-value-added carbon products is a promising strategy for mitigating CO2 emissions and reserving solar energy in chemical form. We report an efficient system for CO2 transformation to CO catalyzed by bare CoP, hybrid CoP/carbon nanotubes (CNTs), and CoP/reduced graphene oxide (rGO) in mixed aqueous solutions containing a Ru-based photosensitizer, under visible-light irradiation. The in situ prepared hybrid catalysts CoP/CNT and CoP/rGO show excellent catalytic activities in CO2 reduction to CO, with a catalytic rates of up to 39 510 and 47 330 µmol h-1 g-1 in the first 2 h of reaction, respectively; a high CO selectivity of 73.1 % for the former was achieved in parallel competing reactions in the photoreduction of CO2 and H2 O. A combination of experimental and computational studies clearly shows that strong interactions between CoP and carbon-supported materials and partially adsorbed H2 O molecules on the catalyst surface significantly improve CO-generating rates.

10.
Arch Oral Biol ; 70: 16-23, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27300491

RESUMEN

OBJECTIVE: The prevalence and severity of dental fluorosis in primary teeth are different from permanent teeth. Previous animal models of dental fluorosis mainly focus on juvenile rats, mice and zebrafish. Our experiment aims to set a dental fluorosis model using zebrafish larva and explore the characteristics of the first generation teeth by fluoride treatment. MATERIALS AND METHODS: After the zebrafish eggs were laid, they were exposed to excess fluoride (19ppm, 38ppm and 76ppm) for five days. The morphological characteristics of first generation teeth were examined by H&E staining, whole-mount alizarin red and alcian blue staining, and scanning electron microscope (SEM) technique. RESULTS: With whole-mount alizarin red and alcian blue staining, the tooth cusps presented red in normal control. 19ppm and 38ppmm fluoride resulted in extensive red staining from tooth cusps to the lower 1/3 of teeth. 76ppm fluoride caused malformed teeth with uneven red staining. H&E staining showed that excess fluoride caused cystic-like changes in 38ppm and 76ppm groups. SEM revealed the dose dependent pathological changes in zebrafish enameloid with fluoride treatment. Based on SEM findings, we set 0-4 dental fluorosis index (DFI) score to label the severity of dental fluorosis. CONCLUSIONS: Excess fluoride presented a dose dependent fluorosis changes in the teeth of zebrafish larva. The DFI scores in our experiment reflect dose dependent fluorosis changes in a good way and will benefit the future research of dental fluorosis.


Asunto(s)
Modelos Animales de Enfermedad , Fluoruros/toxicidad , Fluorosis Dental/patología , Pez Cebra , Animales , Cariostáticos/administración & dosificación , Cariostáticos/toxicidad , Esmalte Dental/química , Esmalte Dental/efectos de los fármacos , Esmalte Dental/patología , Relación Dosis-Respuesta a Droga , Femenino , Fluoruros/administración & dosificación , Fluorosis Dental/diagnóstico por imagen , Fluorosis Dental/metabolismo , Larva , Masculino , Microscopía Electrónica de Rastreo , Fosfatos/administración & dosificación , Fosfatos/toxicidad , Calcificación de Dientes/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...