Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
ACS Nano ; 18(35): 24236-24251, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39173188

RESUMEN

CRISPR/Cas-based molecular diagnosis demonstrates potent potential for sensitive and rapid pathogen detection, notably in SARS-CoV-2 diagnosis and mutation tracking. Yet, a major hurdle hindering widespread practical use is its restricted throughput, limited integration, and complex reagent preparation. Here, a system, microfluidic multiplate-based ultrahigh throughput analysis of SARS-CoV-2 variants of concern using CRISPR/Cas12a and nonextraction RT-LAMP (mutaSCAN), is proposed for rapid detection of SARS-CoV-2 and its variants with limited resource requirements. With the aid of the self-developed reagents and deep-learning enabled prototype device, our mutaSCAN system can detect SARS-CoV-2 in mock swab samples below 30 min as low as 250 copies/mL with the throughput up to 96 per round. Clinical specimens were tested with this system, the accuracy for routine and mutation testing (22 wildtype samples, 26 mutational samples) was 98% and 100%, respectively. No false-positive results were found for negative (n = 24) samples.


Asunto(s)
COVID-19 , Sistemas CRISPR-Cas , Aprendizaje Profundo , SARS-CoV-2 , Sistemas CRISPR-Cas/genética , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Humanos , COVID-19/diagnóstico , COVID-19/virología , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Dispositivos Laboratorio en un Chip , Mutación , Técnicas Analíticas Microfluídicas/instrumentación
2.
Small Methods ; 8(8): e2400030, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38716631

RESUMEN

High-quality, low-cost, and rapid detection is essential for the society to reopen the economy during the critical period of transition from Coronavirus Disease 2019 (COVID-19) pandemic response to pandemic control. In addition to performing sustainable and target-driven tracking of SARS-CoV-2, conducting comprehensive surveillance of variants and multiple respiratory pathogens is also critical due to the frequency of reinfections, mutation immune escape, and the growing prevalence of the cocirculation of multiple viruses. By utilizing a 0.05 cents wax interface, a Stable Interface assisted Multiplex Pathogenesis Locating Estimation in Onepot (SIMPLEone) using nested RPA and CRISPR/Cas12a enzymatic reporting system is successfully developed. This smartphone-based SIMPLEone system achieves highly sensitive one-pot detection of SARS-CoV-2 and its variants, or multiple respiratory viruses, in 40 min. A total of 89 clinical samples, 14 environmental samples, and 20 cat swab samples are analyzed by SIMPLEone, demonstrating its excellent sensitivity (3-6 copies/reaction for non-extraction detection of swab and 100-150 copies/mL for RNA extraction-based assay), accuracy (>97.7%), and specificity (100%). Furthermore, a high percentage (44.2%) of co-infection cases are detected in SARS-CoV-2-infected patients using SIMPLEone's multiplex detection capability.


Asunto(s)
COVID-19 , SARS-CoV-2 , Ceras , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , COVID-19/diagnóstico , COVID-19/virología , Humanos , Ceras/química , Sensibilidad y Especificidad , Animales , Prueba de Ácido Nucleico para COVID-19/métodos , Prueba de Ácido Nucleico para COVID-19/instrumentación , Gatos , Teléfono Inteligente , Técnicas de Amplificación de Ácido Nucleico/métodos , ARN Viral/genética , Sistemas CRISPR-Cas , Técnicas de Diagnóstico Molecular/métodos
3.
Biosensors (Basel) ; 13(7)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37504148

RESUMEN

Reliable detection of specific antibodies against pathogens by lateral flow immunoassay (LFIA) greatly depends on the composition of the detectable complex and the order of its assembly. We compared three LFIA formats for revealing anti-SARS-CoV-2 antibodies in sera with the following detected complexes in the analytical zone of the strip: antigen-antibodies-labeled immunoglobulin-binding protein (Scheme A); antigen-antibodies-labeled antigen (Scheme B); and immunoglobulin-binding protein-antibodies-labeled antigen (Scheme C). The lowest detection limit was observed for Scheme C, and was equal to 10 ng/mL of specific humanized monoclonal antibodies. When working with pooled positive sera, Scheme C had a detection limit 15 times lower than Scheme B and 255 times lower than Scheme A. Due to the high sensitivity of Scheme C, its application for the panel of human sera (n = 22) demonstrated 100% diagnostic specificity and sensitivity. These consistent results be useful for designing the format of LFIA serodiagnosis for other diseases.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Antígenos , Anticuerpos Antivirales , Inmunoensayo/métodos , Sensibilidad y Especificidad
4.
Infect Drug Resist ; 16: 4311-4323, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37424666

RESUMEN

Background: The currently used conventional susceptibility testing for drug-resistant Mycobacterium tuberculosis (M.TB) is limited due to being time-consuming and having low efficiency. Herein, we propose the use of a microfluidic-based method to rapidly detect drug-resistant gene mutations using Kompetitive Allele-Specific PCR (KASP). Methods: A total of 300 clinical samples were collected, and DNA extraction was performed using the "isoChip®" Mycobacterium detection kit. Phenotypic susceptibility testing and Sanger sequencing were performed to sequence the PCR products. Allele-specific primers targeting 37 gene mutation sites were designed, and a microfluidic chip (KASP) was constructed using 112 reaction chambers to simultaneously detect multiple mutations. Chip validation was performed using clinical samples. Results: Phenotypic susceptibility of clinical isolates revealed 38 rifampicin (RIF)-resistant, 64 isoniazid (INH)-resistant, 48 streptomycin (SM)-resistant and 23 ethambutol (EMB)-resistant strains, as well as 33 multi-drug-resistant TB (MDR-TB) strains and 20 strains fully resistant to all four drugs. Optimization of the chip-based detection system for drug resistance detection showed satisfactory specificity and maximum fluorescence at a DNA concentration of 1×101 copies/µL. Further analysis revealed that 76.32% of the RIF-resistant strains harbored rpoB gene mutations (sensitivity, 76.32%; specificity 100%), 60.93% of the INH-resistant strains had katG gene mutations (sensitivity, 60.93%; specificity, 100%), 66.66% of the SM-resistant strains carried drug resistance gene mutations (sensitivity, 66.66%; specificity, 99.2%), and 69.56% of the EMB-resistant strains had embB gene mutations (sensitivity, 69.56%; specificity, 100%). Further, the overall agreement between the microfluidic chip and Sanger sequencing was satisfactory, with a turnaround time of the microfluidic chip was approximately 2 hours, much shorter than the conventional DST method. Conclusion: The proposed microfluidic-based KASP assay provides a cost-effective and convenient method for detecting mutations associated with drug resistance in M. tuberculosis. It represents a promising alternative to the traditional DST method, with satisfactory sensitivity and specificity and a much shorter turnaround time.

5.
Biosensors (Basel) ; 13(2)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36831994

RESUMEN

Respiratory tract infections such as the ongoing coronavirus disease 2019 (COVID-19) has seriously threatened public health in the last decades. The experience of fighting against the epidemic highlights the importance of user-friendly and accessible point-of-care systems for nucleic acid (NA) detection. To realize low-cost and multiplexed point-of-care NA detection, a swing-assisted multiplexed analyzer for point-of-care respiratory tract infection testing (SMART) was proposed to detect multiple respiratory tract pathogens using visible loop-mediated isothermal amplification. By performing hand-swing movements to generate acceleration force to distribute samples into reaction chambers, the design of the SMART system was greatly simplified. By using different format of chips and integrating into a suitcase, this system can be applied to on-site multitarget and multi-sample testing. Three targets including the N and Orf genes of SARS-CoV-2 and the internal control were simultaneously analyzed (limit of detection: 2000 copies/mL for raw sample; 200 copies/mL for extracted sample). Twenty-three clinical samples with eight types of respiratory bacteria and twelve COVID-19 clinical samples were successfully detected. These results indicate that the SMART system has the potential to be further developed as a versatile tool in the diagnosis of respiratory tract infection.


Asunto(s)
COVID-19 , Infecciones del Sistema Respiratorio , Humanos , SARS-CoV-2 , Sistemas de Atención de Punto , Sensibilidad y Especificidad , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos
7.
Biosensors (Basel) ; 12(7)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35884237

RESUMEN

The presence of pathogen-specific antibodies in the blood is widely controlled by a serodiagnostic technique based on the lateral flow immunoassay (LFIA). However, its common one-stage format with an antigen immobilized in the binding zone of a test strip and a nanodispersed label conjugated with immunoglobulin-binding proteins is associated with risks of very low analytical signals. In this study, the first stage of the immunochromatographic serodiagnosis was carried out in its traditional format using a conjugate of gold nanoparticles with staphylococcal immunoglobulin-binding protein A and an antigen immobilized on a working membrane. At the second stage, a labeled immunoglobulin-binding protein was added, which enhanced the coloration of the bound immune complexes. The use of two separated steps, binding of specific antibodies, and further coloration of the formed complexes, allowed for a significant reduction of the influence of non-specific immunoglobulins on the assay results. The proposed approach was applied for the serodiagnosis using a recombinant RBD protein of SARS-CoV-2. As a result, an increase in the intensity of test zone coloration by more than two orders of magnitude was demonstrated, which enabled the significant reduction of false-negative results. The diagnostic sensitivity of the LFIA was 62.5% for the common format and 100% for the enhanced format. Moreover, the diagnostic specificity of both variants was 100%.


Asunto(s)
COVID-19 , Nanopartículas del Metal , Complejo Antígeno-Anticuerpo , COVID-19/diagnóstico , Oro/química , Humanos , Inmunoensayo/métodos , Límite de Detección , Nanopartículas del Metal/química , SARS-CoV-2 , Pruebas Serológicas
8.
Small ; 18(26): e2200854, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35599436

RESUMEN

The ongoing pandemic caused by severe acute respiratory syndrome coronavirus 2 is profoundly influencing the global healthcare system and people's daily lives. The high resource consumption of coronavirus disease 2019 (COVID-19) is resulting in insufficient surveillance of coinfection or resurgence of other critical respiratory epidemics, which is of public concern. To facilitate evaluation of the current coinfection situation, a microfluidic system (MAPnavi) is developed for the rapid (<40 min) and sensitive diagnosis of multiple respiratory viruses from swab samples in a fully sealed and automated manner, in which a nested-recombinase polymerase amplification and the CRISPR-based amplification system is first proposed to ensure the sensitivity and specificity. This novel system has a remarkably low limit of detection (50-200 copies mL-1 ) and is successfully applied to detect 171 clinical samples (98.5% positive predictive agreement; 100% negative predictive agreement), and the results identify 45.6% coinfection among clinical samples from patients with COVID-19. This approach has the potential to shift diagnostic and surveillance efforts from targeted testing for a high-priority virus to comprehensive testing of multiple virus sets and to greatly benefit the implementation of decentralized testing.


Asunto(s)
COVID-19 , Coinfección , Virus , COVID-19/diagnóstico , Sistemas CRISPR-Cas/genética , Coinfección/diagnóstico , Humanos , Microfluídica , Técnicas de Amplificación de Ácido Nucleico/métodos , Sensibilidad y Especificidad
9.
Lab Chip ; 22(4): 697-708, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34923580

RESUMEN

Hereditary hearing loss is one of the most common human neurosensory disorders, and there is a great need for early intervention methods such as genetically screening newborns. Single nucleotide polymorphisms (SNPs) are the major genetic targets for hearing-loss screening. In this study, a fully integrated SNP genotyping system was constructed to identify hereditary hearing loss-related genetic markers from human whole blood. The entire detection process, including blood cell lysis, nucleic acid extraction, the reaction mixture distribution, the chambers sealing and the two-colour multiplex competitive allele-specific polymerase chain reaction (KASP), can be automatically conducted in a self-contained cassette within 3 hours. To critically evaluate the performance of the system, its specificity, sensitivity and stability were assessed. Then, 13 clinical samples were genotyped with this fluidic cassette system to detect seven hotspot deafness-associated mutations in three genes (MT-RNR1, GJB2 and SLC26A4). The detection results of the cassette system were 100% concordant with those obtained by Sanger sequencing, proving its accuracy in the genetic screening of inherited hearing loss.


Asunto(s)
Sordera , Pérdida Auditiva , Conexinas/genética , Análisis Mutacional de ADN/métodos , Sordera/diagnóstico , Sordera/genética , Genotipo , Pérdida Auditiva/diagnóstico , Pérdida Auditiva/genética , Humanos , Recién Nacido , Mutación , Transportadores de Sulfato/genética
10.
Microsyst Nanoeng ; 7: 94, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34840805

RESUMEN

Coronavirus disease 2019 (COVID-19) has emerged, rapidly spread and caused significant morbidity and mortality worldwide. There is an urgent public health need for rapid, sensitive, specific, and on-site diagnostic tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In this study, a fully integrated and portable analyzer was developed to detect SARS-CoV-2 from swab samples based on solid-phase nucleic acid extraction and reverse transcription loop-mediated isothermal amplification (RT-LAMP). The swab can be directly inserted into a cassette for multiplexed detection of respiratory pathogens without pre-preparation. The overall detection process, including swab rinsing, magnetic bead-based nucleic acid extraction, and 8-plex real-time RT-LAMP, can be automatically performed in the cassette within 80 min. The functionality of the cassette was validated by detecting the presence of a SARS-CoV-2 pseudovirus and three other respiratory pathogens, i.e., Klebsiella pneumoniae, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia. The limit of detection (LoD) for the SARS-CoV-2 pseudovirus was 2.5 copies/µL with both primer sets (N gene and ORF1ab gene), and the three bacterial species were successfully detected with an LoD of 2.5 colony-forming units (CFU)/µL in 800 µL of swab rinse. Thus, the analyzer developed in this study has the potential to rapidly detect SARS-CoV-2 and other respiratory pathogens on site in a "raw-sample-in and answer-out" manner.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA