Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mLife ; 3(2): 231-239, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38948149

RESUMEN

Members of the multiple antibiotic resistance regulator (MarR) protein family are ubiquitous in bacteria and play critical roles in regulating cellular metabolism and antibiotic resistance. MarR family proteins function as repressors, and their interactions with modulators induce the expression of controlled genes. The previously characterized modulators are insufficient to explain the activities of certain MarR family proteins. However, recently, several MarR family proteins have been reported to sense sulfane sulfur, including zero-valent sulfur, persulfide (R-SSH), and polysulfide (R-SnH, n ≥ 2). Sulfane sulfur is a common cellular component in bacteria whose levels vary during bacterial growth. The changing levels of sulfane sulfur affect the expression of many MarR-controlled genes. Sulfane sulfur reacts with the cysteine thiols of MarR family proteins, causing the formation of protein thiol persulfide, disulfide bonds, and other modifications. Several MarR family proteins that respond to reactive oxygen species (ROS) also sense sulfane sulfur, as both sulfane sulfur and ROS induce the formation of disulfide bonds. This review focused on MarR family proteins that sense sulfane sulfur. However, the sensing mechanisms reviewed here may also apply to other proteins that detect sulfane sulfur, which is emerging as a modulator of gene regulation.

2.
Biotechnol J ; 19(5): e2400156, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38804136

RESUMEN

In spite of tremendous efforts dedicated to addressing bacterial infections and biofilm formation, the post-antibiotic ear continues to witness a gap between the established materials and an easily accessible yet biocompatible antibacterial reagent. Here we show carbon dots (CDs) synthesized via a single hydrothermal process can afford promising antibacterial activity that can be further enhanced by exposure to light. By using citric acid and polyethyleneimine as the precursors, the photoluminescence CDs can be produced within a one-pot, one-step hydrothermal reaction in only 2 h. The CDs demonstrate robust antibacterial properties against both Gram-positive and Gram-negative bacteria and, notably, a considerable enhancement of antibacterial effect can be observed upon photo-irradiation. Mechanistic insights reveal that the CDs generate singlet oxygen (1O2) when exposed to light, leading to an augmented reactive oxygen species level. The approach for disruption of biofilms and inhibition of biofilm formation by using the CDs has also been established. Our findings present a potential solution to combat antibacterial resistance and offer a path to reduce dependence on traditional antibiotics.


Asunto(s)
Antibacterianos , Biopelículas , Carbono , Puntos Cuánticos , Biopelículas/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Carbono/química , Carbono/farmacología , Puntos Cuánticos/química , Pruebas de Sensibilidad Microbiana , Especies Reactivas de Oxígeno/metabolismo , Luz , Oxígeno Singlete/metabolismo , Polietileneimina/química , Polietileneimina/farmacología , Ácido Cítrico/química , Ácido Cítrico/farmacología , Bacterias Gramnegativas/efectos de los fármacos
3.
Front Cell Infect Microbiol ; 14: 1296777, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38469347

RESUMEN

Phage therapy is a potential approach in the biocontrol of foodborne pathogens. However, the emergence of phage resistance and the narrow host range of most phage isolates continue to limit the antimicrobial efficacy of phages. Here, we investigated the potential of the pqsA gene, encoding the anthranilate-CoA ligase enzyme, as an adjuvant for phage therapy. The knockout of the pqsA gene significantly enhanced the bactericidal effect of phages vB_Pae_QDWS and vB_Pae_S1 against Pseudomonas aeruginosa. Under phage infection pressure, the growth of the PaΔpqsA was significantly inhibited within 8 h compared to the wild-type PAO1. Furthermore, we found that altering phage adsorption is not how PaΔpqsA responds to phage infection. Although pqsA represents a promising target for enhancing phage killing, it may not be applicable to all phages, such as types vB_Pae_W3 and vB_Pae_TR. Our findings provide new material reserves for the future design of novel phage-based therapeutic strategies.


Asunto(s)
Bacteriófagos , Terapia de Fagos , Infecciones por Pseudomonas , Fagos Pseudomonas , Humanos , Pseudomonas aeruginosa/genética , Fagos Pseudomonas/genética , Infecciones por Pseudomonas/terapia , Mutación
4.
Microb Pathog ; 183: 106279, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37549798

RESUMEN

Clostridium perfringens, a common foodborne pathogen, exhibit high-stress resistance. The prevailing reliance on antibiotics in the farming industry for its prevention and control has led to increasing concerns over antibiotic residue and bacterial resistance. Bacteriophages that possess specific lytic activity against C. perfringens are of significant interest. Here, a novel C. perfringens phage, named vB_CP_qdyz_P5, was isolated and characterized. The phage displayed high stability at temperatures below 70 °C and pH levels ranging from 4 to 12. Genome analysis revealed that vB_CP_qdyz_P5 has a double-stand DNA of 18,888 bp with a G + C composition of 28.8%. Among the 27 identified opening reading frames (ORFs), eight were found to be functional genes. BLASTn analysis showed that vB_CP_qdyz_P5 is closely related to phage DCp1, with a genome homology coverage of 83%. Phylogenetic analysis indicated that vB_CP_qdyz_P5 may be a novel phage of the family Guelinviridae, Susfortunavirus. This study provides important preliminary information for further research on the potential use of vB_CP_qdyz_P5 in protecting against C. perfringens and maintaining intestinal health.


Asunto(s)
Bacteriófagos , Bacteriófagos/genética , Clostridium perfringens/genética , Filogenia , Genoma Viral , ADN , Antibacterianos
5.
Int J Food Microbiol ; 403: 110304, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37429117

RESUMEN

Quorum sensing (QS) plays an important role in phage-host interactions. Shewanella baltica can't produce the N-acyl-homoserine lactones (AHLs) signal molecules but can eavesdrop on exogenous AHLs through its LuxR receptor. However, no clear evidence exists regarding the involvement of AHLs-mediated QS systems in S. baltica in regulating phage infection. Here, we report that AHLs modulated the phage resistance of S. baltica OS155. Specifically, we characterized a S. baltica phage vB_Sb_QDWS and preliminarily identified that lipopolysaccharide (LPS) is an important receptor for phage vB_Sb_QDWS. AHLs could protect S. baltica against phage infection by decreasing LPS-mediated phage adsorption. The expression of genes galU and tkt, which are essential for LPS synthesis, down-regulated significantly in response to AHLs autoinducers. Our finding confirms the important roles of QS in virus-host interactions and would be helpful to develop novel phage strategies for food spoilage control.


Asunto(s)
Acil-Butirolactonas , Proteínas Bacterianas , Bacteriófagos , Shewanella , Transactivadores , Percepción de Quorum , Shewanella/metabolismo , Shewanella/virología , Transducción de Señal , Acil-Butirolactonas/metabolismo , Proteínas Represoras/metabolismo , Transactivadores/metabolismo , Bacteriófagos/fisiología , Acoplamiento Viral , Receptores Virales/metabolismo , Proteínas Bacterianas/metabolismo , Lipopolisacáridos/metabolismo , Expresión Génica
6.
Mol Genet Genomics ; 298(5): 1037-1044, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37247008

RESUMEN

Bacteriophages are potential antibiotic substitutes for the treatment of antibiotic resistant bacteria. Here, we report the genome sequences of a double-stranded DNA podovirus vB_Pae_HB2107-3I against clinical multi-drug resistant Pseudomonas aeruginosa. Phage vB_Pae_HB2107-3I remained stable over a wide range of temperatures (37-60 °C) and pH values (pH 4-12). At MOI of 0.01, the latent period of vB_Pae_HB2107-3I was 10 min, and the final titer reached about 8.1 × 109 PFU/mL. The vB_Pae_HB2107-3I genome is 45,929 bp, with an average G + C content of 57%. A total of 72 open reading frames (ORFs) were predicted, of which 22 ORFs have a predicted function. Genome analyses confirmed the lysogenic nature of this phage. Phylogenetic analysis revealed that phage vB_Pae_HB2107-3I was a novel member of Caudovirales infecting P. aeruginosa. The characterization of vB_Pae_HB2107-3I enrich the research on Pseudomonas phages and provide a promising biocontrol agent against P. aeruginosa infections.


Asunto(s)
Bacteriófagos , Bacteriófagos/genética , Pseudomonas aeruginosa/genética , Filogenia , Genoma Viral/genética , Antibacterianos , Sistemas de Lectura Abierta/genética
7.
J Microbiol ; 61(5): 559-569, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37213024

RESUMEN

Escherichia coli is a preferred strain for recombinant protein production, however, it is often plagued by phage infection during experimental studies and industrial fermentation. While the existing methods of obtaining phage-resistant strains by natural mutation are not efficient enough and time-consuming. Herein, a high-throughput method by combining Tn5 transposon mutation and phage screening was used to produce Escherichia coli BL21 (DE3) phage-resistant strains. Mutant strains PR281-7, PR338-8, PR339-3, PR340-8, and PR347-9 were obtained, and they could effectively resist phage infection. Meanwhile, they had good growth ability, did not contain pseudolysogenic strains, and were controllable. The resultant phage-resistant strains maintained the capabilities of producing recombinant proteins since no difference in mCherry red fluorescent protein expression was found in phage-resistant strains. Comparative genomics showed that PR281-7, PR338-8, PR339-3, and PR340-8 mutated in ecpE, nohD, nrdR, and livM genes, respectively. In this work, a strategy was successfully developed to obtain phage-resistant strains with excellent protein expression characteristics by Tn5 transposon mutation. This study provides a new reference to solve the phage contamination problem.


Asunto(s)
Bacteriófagos , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Mutagénesis , Proteínas Recombinantes/genética , Mutación
8.
J Basic Microbiol ; 63(5): 530-541, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37032321

RESUMEN

Salmonella enterica contamination is a primary cause of global food poisoning. Using phages as bactericidal alternatives to antibiotics could confront the issue of drug resistance. However, the problem of phage resistance, especially mutant strains with multiple phage resistance, is a critical barrier to the practical application of phages. In this study, a library of EZ-Tn5 transposable mutants of susceptible host S. enterica B3-6 was constructed. After the infestation pressure of a broad-spectrum phage TP1, a mutant strain with resistance to eight phages was obtained. Analysis of the genome resequencing results revealed that the SefR gene was disrupted in the mutant strain. The mutant strain displayed a reduced adsorption rate of 42% and a significant decrease in swimming and swarming motility, as well as a significantly reduced expression of the flagellar-related FliL and FliO genes to 17% and 36%, respectively. An uninterrupted form of the SefR gene was cloned into vector pET-21a (+) and used for complementation of the mutant strain. The complemented mutant exhibited similar adsorption and motility as the wild-type control. These results suggest that the disrupted flagellar-mediated SefR gene causes an adsorption inhibition, which is responsible for the phage-resistant phenotype of the S. enterica transposition mutant.


Asunto(s)
Bacteriófagos , Salmonella enterica , Mutación Silenciosa , Mutación , Antibacterianos/farmacología
9.
Microb Pathog ; 180: 106111, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37084823

RESUMEN

Cutibacterium acnes (C. acnes) is a symbiotic bacterium that plays an important role in the formation of acn e inflammatory lesions. As a common component of the acne microbiome, C. acnes phages have the potential to make a significant contribution to treating antibiotic-resistant strains of C. acnes. However, little is known about their genetic composition and diversity. In this study, a new lytic phage, Y3Z, infecting C. acne, was isolated and characterized. Electron microscopy analysis revealed this phage is a siphovirus. Phage Y3Z is composed of 29,160 bp with a GC content of 56.32%. The genome contains 40 open reading frames, 17 of which had assigned functions, while no virulence-related genes, antibiotic resistance genes or tRNA were identified. The one-step growth curve showed the burst size was 30 PFU (plaque-forming unit)/cell. And it exhibited tolerance over a broad range of pH and temperature ranges. Phage Y3Z could infect and lyse all C. acnes isolates tested, though the host range of PA6 was restricted to C. acnes. Based on the phylogenetic and comparative genomic analyses, Y3Z may represent a new siphovirus infecting C. acnes. Characterization of Y3Z will enrich our knowledge about the diversity of C. acnes phages and provide a potential arsenal for thetreatment of acne infection.


Asunto(s)
Acné Vulgar , Bacteriófagos , Humanos , Genoma Viral , Filogenia , Propionibacterium acnes/genética , Acné Vulgar/genética , Acné Vulgar/microbiología
10.
Microbiol Spectr ; 11(1): e0391122, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36602321

RESUMEN

Phage therapy is challenged by the frequent emergence of bacterial resistance to phages. As an interspecies signaling molecule, indole plays important roles in regulating bacterial behaviors. However, it is unclear whether indole is involved in the phage-bacterium interactions. Here, we report that indole modulated phage resistance of Pseudomonas aeruginosa PAO1. Specifically, we found that the type IV pilus (T4P) acts as an important receptor for P. aeruginosa phages vB_Pae_S1 and vB_Pae_TR, and indole could protect P. aeruginosa against phage infection via decreasing the T4P-mediated phage adsorption. Further investigation demonstrated that indole downregulated the expression of genes pilA, pilB, and pilQ, which are essential for T4P assembly and activity. Indole inhibits phage attacks, but our data suggest that indole functions not through interfering with the AHL-based QS pathway, although las quorum sensing (QS) of P. aeruginosa PAO1 were reported to promote phage infection. Our finding confirms the important roles of indole in virus-host interactions, which will provide important enlightenment in promoting phage therapy for P. aeruginosa infections. IMPORTANCE Our finding is significant with respect to the study of the interactions between phage and host. Although the important roles of indole in bacterial physiology have been revealed, no direct examples of indole participating in phage-host interactions were reported. This study reports that indole could modulate the phage resistance of indole-nonproducing Pseudomonas aeruginosa PAO1 through inhibition of phage adsorption mechanism. Our finding will be significant for guiding phage therapy and fill some gaps in the field of phage-host interactions.


Asunto(s)
Bacteriófagos , Bacteriófagos/metabolismo , Pseudomonas aeruginosa/genética , Fimbrias Bacterianas/metabolismo , Percepción de Quorum , Proteínas Bacterianas/genética
11.
Virus Res ; 323: 198978, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36288775

RESUMEN

Here, we report the genome sequence of a double-stranded DNA siphovirus, vB_Pae_LC3I3 infective for P. aeruginosa PA14. Phage vB_Pae_LC3I3 was identified as a linear double-stranded DNA phage of 49,926 bp with 59% G+C content. The vB_Pae_LC3I3 genome contains 78 open reading frames, and the function of 22 ORFs can be predicted. Genome analysis confirmed the lysogenic nature of this phage, which encodes the typical lysogen-related integrase and CI/Cro regulator. One-step growth curve revealed that the latent period of phage vB_Pae_LC3I3 lasted for 30 min. And vB_Pae_LC3I3 showed good temperature stability and pH stability. Based on electron microscopy, phylogenetic, and comparative genomic analyses, this novel Pseudomonas temperate phage represents a novel unassigned siphoviruses cluster. The study of phage vB_Pae_LC3I3 will provide basic information for further research on treatment of P. aeruginosa infections.

12.
Antioxidants (Basel) ; 11(9)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36139741

RESUMEN

Sulfane sulfur, including organic persulfide and polysulfide, is a normal cellular component, and its level varies during growth. It is emerging as a signaling molecule in bacteria, regulating the gene regulator MarR in Escherichia coli, MexR in Pseudomonas aeruginosa, and MgrA of Staphylococcus aureus. They are MarR-family regulators and are often repressors for multiple antibiotic resistance genes. Here, we report that another MarR-type regulator OhrR that represses the expression of itself and a thiol peroxidase gene ohr in P. aeruginosa PAO1 also responded to sulfane sulfur. PaOhrR formed disulfide bonds between three Cys residues within a dimer after polysulfide treatment. The modification reduced its affinity to its cognate DNA binding site. An Escherichia coli reporter system, in which mKate was under the repression of OhrR, showed that PaOhrR derepressed its controlled gene when polysulfide was added, whereas the mutant PaOhrR with two Cys residues changed to Ser residues did not respond to polysulfide. The expression of the PaOhrR-repressed mKate was significantly increased when the cells enter the late log phase when cellular sulfane sulfur reached a maximum, but the mKate expression under the control of the PaOhrR-C9SC19S double mutant was not increased. Furthermore, the expression levels of ohrR and ohr in P. aeruginosa PAO1 were significantly increased when cellular sulfane sulfur was high. Thus, PaOhrR senses both exogenous and intrinsic sulfane sulfur to derepress its controlled genes. The finding also suggests that sulfane sulfur may be a common inducer of the MarR-type regulators, which may confer the bacteria to resist certain stresses without being exposed to the stresses.

13.
Microbiol Spectr ; 10(5): e0135622, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-35972274

RESUMEN

Bacteria frequently encounter selection by both phages and antibiotics. However, our knowledge on the evolutionary interactions between phages and antibiotics are still limited. Here, we characterized a phage-resistant Pseudomonas aeruginosa variant PAO1-R1 that shows increased sensitivity to gentamicin and polymyxin B. Using whole genome sequencing, significant genome differences were observed between the reference P. aeruginosa PAO1 and PAO1-R1. Compared to PAO1, 64 gene-encoding proteins with nonsynonymous single nucleotide polymorphisms (SNPs) and 31 genes with insertion/deletion (indel) mutations were found in PAO1-R1. We observed a significant reduction in phage adsorption rate for both phage vB_Pae_QDWS and vB_Pae_W3 against PAO1-R1 and proposed that disruption of phage adsorption is likely the main cause for evolving resistance. Because the majority of spontaneous mutations are closely related to membrane components, alterations in the cell envelope may explain the antibiotic-sensitive phenotype of PAO1-R1. Collectively, we demonstrate that the evolution of phage resistance comes with fitness defects resulting in antibiotic sensitization. Our finding provides new insights into the evolutionary interactions between resistance to the phage and sensitivity to antibiotics, which may have implications for the future clinical use of steering in phage therapies. IMPORTANCE Bacteria frequently encounter the selection pressure from both antibiotics and lytic phages. Little is known about the evolutionary interactions between antibiotics and phages. Our study provides new insights into the trade-off mechanism between resistance to the phage and sensitivity to antibiotics. This evolutionary trade-off is not dependent on the outer membrane proteins (OMPs) of the multidrug efflux pumps. The disruption of phage adsorption that induced phage resistance and the changes in structure or composition of membranes are presumably one of the major causes for antibiotic sensitivity. Our finding may fill some gaps in the field of phage-host interplay and have implications for the future clinical use of steering in phage therapies.


Asunto(s)
Bacteriófagos , Fagos Pseudomonas , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Fagos Pseudomonas/genética , Antibacterianos/farmacología , Polimixina B/farmacología , Polimixina B/metabolismo , Gentamicinas/metabolismo
14.
Arch Virol ; 167(5): 1311-1316, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35362803

RESUMEN

Here, we describe the characterization and genome annotation of the newly isolated lytic Vibrio parahaemolyticus phage vB_VpP_WS1, isolated from sewage samples collected in Qingdao, China. Transmission electron microscopy revealed that vB_VpP_WS1 is about 22 nm in size and that the virions are isometric, likely icosahedral, particles similar to those of members of the Microviridae. The digestion patterns of phage nucleic acids and whole-genome sequencing analysis together revealed that phage vB_VpP_WS1 has a single-stranded DNA genome of 5564 nt. Eight open reading frames were identified, only four of which could be annotated. The proteins of vB_VpP_WS1 displayed low sequence similarity to their homologs encoded by other microviruses. Phylogenetic analysis based on the major capsid protein suggested that vB_VpP_WS1 is a tentative new member of the family Microviridae.


Asunto(s)
Bacteriófagos , Microviridae , Vibrio parahaemolyticus , Genoma Viral , Microviridae/genética , Filogenia
15.
Arch Virol ; 167(5): 1325-1331, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35394245

RESUMEN

We present here the results of the analysis of the complete genome sequence of a potentially temperate phage, vB_Sb_QDWS, which was isolated from wastewater samples collected in Qingdao, China. The genome of phage vB_Sb_QDWS is composed of a double-stranded DNA that is 47,902 bp in length with a G + C content of 63.16%. It is predicted to contain 69 putative protein-encoding genes. Microscopic and genomic analysis showed that vB_Sb_QDWS is a novel phage of the class Siphoviridae.


Asunto(s)
Bacteriófagos , Shewanella , Siphoviridae , Bacteriófagos/genética , ADN Viral/genética , Genoma Viral , Filogenia , Análisis de Secuencia de ADN , Shewanella/genética , Siphoviridae/genética , Siphoviridae/ultraestructura
16.
J Virol ; 96(8): e0019722, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35348363

RESUMEN

In Pseudomonas aeruginosa, the complex multisensing regulatory networks RetS-GacS/GacA have been demonstrated to play key roles in controlling the switch between planktonic and sessile lifestyles. However, whether this multisensing system is involved in the regulation of phage infection has not been investigated. Here, we provide a link between the sensors RetS/GacS and infection of phages vB_Pae_QDWS and vB_Pae_W3. Our data suggest that the sensors kinases RetS and GacS in Pseudomonas aeruginosa play opposite regulatory functions on phage infection. Mutation in retS increased phage resistance. Cellular levels of RsmY and RsmZ increased in PaΔretS and were positively correlated with phage resistance. Further analysis demonstrated that RetS regulated phage infection by affecting the type IV pilus (T4P)-mediated adsorption. The regulation of RetS on phage infection depends on the GacS/GacA two-component system and is likely a dynamic process in response to environmental signals. The findings offer additional support for the rapid emergence of phage resistance. IMPORTANCE Our knowledge on the molecular mechanisms behind bacterium-phage interactions remains limited. Our study reported that the complex multisensing regulatory networks RetS-GacS/GacA of Pseudomonas aeruginosa PAO1 play key roles in controlling phage infection. The main observation was that the mutation in RetS could result in increased phage resistance by reducing the type IV pilus-mediated phage adsorption. The bacterial defense strategy is generally applicable to various phages since many P. aeruginosa phages can use type IV pilus as their receptors. The results also suggest that the phage infection is likely to be regulated dynamically, which depends on the environmental stimuli. Reduction of the signals that RetS favors would increase phage resistance. Our study is particularly remarkable for uncovering a signal transduction system that was involved in phage infection, which may help in filling some knowledge gaps in this field.


Asunto(s)
Bacteriófagos , Pseudomonas aeruginosa , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/virología , Transducción de Señal/genética
17.
J Virol ; 96(5): e0176921, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35020473

RESUMEN

There is a continuously expanding gap between predicted phage gene sequences and their corresponding functions, which has largely hampered the development of phage therapy. Previous studies reported several phage proteins that could interfere with the intracellular processes of the host to obtain efficient infection. But few phage proteins that protect host against phage infection have been identified and characterized in detail. Here, we isolate a phage, vB_Pae_QDWS, capable of infecting Pseudomonas aeruginosa PAO1 and report that its encoded Gp21 protein protects PAO1 against phage infection. Expression of Gp21 regulates bacterial quorum sensing with an inhibitory effect in low cell density and an activation effect in high cell density. By testing the type IV pilus (TFP)-mediated twitching motility and transmission electron microscopy analysis, Gp21 was found to decrease the pilus synthesis. Further, by constructing the TFP synthesis gene pilB mutant and performing adsorption and phage resistance assay, we demonstrated that the Gp21 protein could block phage infection via decreasing the TFP-mediated phage adsorption. Gp21 is a novel protein that inhibits phage efficacy against bacteria. The study deepens our understanding of phage-host interactions. IMPORTANCE The majority of the annotated phage genes are currently deposited as "hypothetical protein" with unknown function. Research has revealed that some phage proteins serve to inhibit or redirect the host intracellular processes for phage infection. Conversely, we report a phage encoded protein Gp21 that protects the host against phage infection. The pathways that Gp21 involved in antiphage defense in Pseudomonas aeruginosa PAO1 interfere with quorum sensing and decrease type IV pilus-mediated phage adsorption. Gp21 is a novel protein with a low sequence homology with other reported twitching inhibitory proteins. As a lytic phage-derived protein, Gp21 expression protects P. aeruginosa PAO1 from reinfection by phage vB_Pae_QDWS, which may explain the well-known pseudolysogeny caused by virulent phages. Our discoveries provide valuable new insight into phage-host evolutionary dynamics.


Asunto(s)
Fagos Pseudomonas , Pseudomonas aeruginosa , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Expresión Génica , Fagos Pseudomonas/fisiología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/virología , Percepción de Quorum
18.
mBio ; 13(1): e0317421, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35038901

RESUMEN

Quorum sensing (QS) is used to coordinate social behaviors, such as virulence and biofilm formation, across bacterial populations. However, the role of QS in regulating phage-bacterium interactions remains unclear. Preventing phage recognition and adsorption are the first steps of bacterial defense against phages; however, both phage recognition and adsorption are a prerequisite for the successful application of phage therapy. In the present study, we report that QS upregulated the expression of phage receptors, thus increasing phage adsorption and infection rates in Pseudomonas aeruginosa. In P. aeruginosa PAO1, we found that las QS, instead of rhl QS, upregulated the expression of galU for lipopolysaccharide synthesis. Lipopolysaccharides act as the receptor of the phage vB_Pae_QDWS. This las QS-mediated phage susceptibility is a dynamic process, depending on host cell density. Our data suggest that inhibiting QS may reduce the therapeutic efficacy of phages. IMPORTANCE Phage resistance is a major limitation of phage therapy, and understanding the mechanisms by which bacteria block phage infection is critical for the successful application of phage therapy. In the present study, we found that Pseudomonas aeruginosa PAO1 uses las QS to promote phage infection by upregulating the expression of galU, which is necessary for the synthesis of phage receptor lipopolysaccharides. In contrast to the results of previous reports, we showed that QS increases the efficacy of phage-mediated bacterial killing. Since QS upregulates the expression of virulence factors and promotes biofilm development, which are positively correlated with lipopolysaccharide production in P. aeruginosa, increased phage susceptibility is a novel QS-mediated trade-off. QS inhibition may increase the efficacy of antibiotic treatment, but it will reduce the effectiveness of phage therapy.


Asunto(s)
Infecciones por Pseudomonas , Percepción de Quorum , Humanos , Pseudomonas aeruginosa , Lipopolisacáridos/farmacología , Biopelículas , Factores de Virulencia , Proteínas Bacterianas/farmacología , Antibacterianos/farmacología , Infecciones por Pseudomonas/microbiología
19.
Molecules ; 28(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36615209

RESUMEN

Freshness is the most fundamental and important factor to assess raw fish quality. The purpose of our study was to determine the potential spoilage indexes of salmon during non-frozen storage by using headspace solid-phase microextraction (HS-SPME) followed by gas chromatography-mass spectrometry (GC-MS). More than 300 volatile compounds in salmon were detected when sensory scores declined gradually following the quality changes of salmon at different temperatures. And there were 27 and 31 compounds that showed concentration variations when stored at 4 °C and 25 °C, respectively. Among them, the contents of 1,3-di-tert-butylbenzene, acetic acid, and 3-methyl-1-butanol increased significantly in the later storage period and were in accordance with the salmon's qualities. The present study provides valuable information on the volatile chemical spoilage indexes that are closely related to the freshness of salmon, which may provide an efficient alternative way for quality evaluation of salmon.


Asunto(s)
Salmón , Compuestos Orgánicos Volátiles , Animales , Cromatografía de Gases y Espectrometría de Masas/métodos , Microextracción en Fase Sólida/métodos , Alimentos Marinos/análisis , Ácido Acético/análisis , Compuestos Orgánicos Volátiles/análisis
20.
Antioxidants (Basel) ; 10(11)2021 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-34829649

RESUMEN

Sulfane sulfur, including persulfide and polysulfide, is produced from the metabolism of sulfur-containing organic compounds or from sulfide oxidation. It is a normal cellular component, participating in signaling. In bacteria, it modifies gene regulators to activate the expression of genes involved in sulfur metabolism. However, to determine whether sulfane sulfur is a common signal in bacteria, additional evidence is required. The ubiquitous multiple antibiotic resistance regulator (MarR) family of regulators controls the expression of numerous genes, but the intrinsic inducers are often elusive. Recently, two MarR family members, Pseudomonas aeruginosa MexR and Staphylococcus aureus MgrA, have been reported to sense sulfane sulfur. Here, we report that Escherichia coli MarR, the prototypical member of the family, also senses sulfane sulfur to form one or two disulfide or trisulfide bonds between two dimers. Although the tetramer with two disulfide bonds does not bind to its target DNA, our results suggest that the tetramer with one disulfide bond does bind to its target DNA, with reduced affinity. An MarR-repressed mKate reporter is strongly induced by polysulfide in E. coli. Further investigation is needed to determine whether sulfane sulfur is a common signal of the family members, but three members sense cellular sulfane sulfur to turn on antibiotic resistance genes. The findings offer additional support for a general signaling role of sulfane sulfur in bacteria.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...