Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros











Intervalo de año de publicación
1.
Acta Pharmaceutica Sinica ; (12): 119-134, 2024.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1005447

RESUMEN

The purpose of this study was to explore the improving effect of Anshen Dingzhi Prescription (ADP) on Alzheimer's disease (AD)-like behavior in mice and its mechanisms. The main chemical components of ADP were identified by ultra performance liquid chromatography-time-of-flight mass spectrometry (UPLC-Q-TOF-MS). The AD-like mouse model was induced by D-galactose (D-gal) combined with Aβ1-42 oligomer (AβO). The effect of ADP on AD-like behavior in mice was assessed using various behavioral experiments; pathomorphological changes in mouse hippocampal tissue were observed by Nissl staining and transmission electron microscopy; ELISA was used in the assessment of oxidative stress factors and inflammation-related factor levels; Western blot was performed to detect the expression of Aβ, Tau and glial fibrillary acidic protein (GFAP) proteins. The active components of ADP were screened according to TCMSP and HERB database, and the action targets of active components were predicted by Swiss Target Prediction platform. In addition, the targets of AD were predicted through DisGeNET database. Further, GO and KEGG enrichment analysis of common targets was carried out by Metascape database. Combined with the results of GO and KEGG analysis, in vivo experiments were carried out to explore the potential mechanism of ADP improving AD-like behavior in mice from the PI3K/Akt, calcium signal pathway and synaptic function. Finally, the core components of ADP were molecularly docked to the validated targets using Autodock Vina. Animal experiments were approved by the Animal Ethics Committee of Anhui University of Chinese Medicine (approval number: AHUCM-mouse-2021080). The results showed that the five chemical components, including ginsenoside Rg1, ginsenoside Rb1, tenuifolin, poricoic acid B and α-asarone were found in the ADP. ADP significantly improved the anxiety-like behavior and memory impairment, protected hippocampal neurons, decreased the levels of oxidative stress and inflammation, and inhibited the expression of Aβ and p-Tau induced by D-galactose combined with AβO in mice. The results of network pharmacology suggested that PI3K/Akt, calcium signal pathway and cell components related to postsynaptic membrane might be the key factors for ADP to improve AD. Animal experiments revealed that ADP up-regulated N-methyl-D-aspartate receptor 2A (GluN2A), postsynaptic density protein 95 (PSD95), calpain-1, phosphorylated protein kinase B (p-Akt), phosphorylated cAMP response element binding protein (p-CREB), brain-derived neurotrophic factor (BDNF) expression and inhibited p-GluN2B and calpain-2 expression in the hippocampus of AD-like mice. The molecular docking results demonstrated that the core components of ADP, such as panaxacol, dehydroeburicoic acid, deoxyharringtonine, etc. had a high binding ability with the validated targets GRIN2A, GRIN2B, PSD95, etc. In summary, our results indicate ADP improves AD-like pathological and behavioral changes induced by D-galactose combined with AβO in mice, and the mechanism might be related to the NMDAR/calpain axis and Akt/CREB/BDNF pathway.

2.
Zhen Ci Yan Jiu ; 48(11): 1079-1087, 2023 Nov 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-37984904

RESUMEN

OBJECTIVES: To explore the effect of electroacupuncture (EA) at "Baihui" (GV20) and "Shenting" (GV24) on the microvascular structure and related protein expression in the hippocampus of vascular dementia (VD) rat model, and to investigate the mechanism of EA in the treatment of VD. METHODS: A total of 24 SD rats were randomly divided into sham operation, model, EA, and oxiracetam groups, with 6 rats in each group. Multiple cerebral infarction method was used to establish VD model. In the EA group, EA was applied to GV20 and GV24 for 30 min, once daily for 14 days. Rats in the oxiracetam group were treated with oxiracetam (50 mg/kg) by intraperitoneal injection, and the course of treatment was the same as that in the EA group. Learning and memory ability were evaluated by using Morris water maze test and new object recognition experiment. The cerebral blood flow was detected by laser doppler. The microvascular structure in the hippocampus was observed by transmission electron microscopy. The expression of vascular structure related proteins of platelet-derived growth factor receptor (PDGFR)-ß, platelet endothelial cell adhesion molecule-1(CD31), neural cadherin N-Cadherin, Zonula occludens protein-1(ZO-1) in the hippocampus were measured by Western blot. RESULTS: Compared with the sham operation group, the rats in the model group had a significant increase in time of first crossing the platform, a significant decrease in the number of crossing platform and the new object preference index (P<0.05), a significant decrease in cerebral blood flow (P<0.05), and a significant increase in the brain weight (P<0.05). The structure boundary of pericyte and endothelial cells in the microvessels of the hippocampal CA1 area of model group was blurred, accompanied by obvious edema around the vessels and the reduction of tight junctions. The protein expression levels of PDGFR-ß, CD31, N-Cadherin, ZO-1 were significantly decreased in the model group compared with those in the sham operation group (P<0.05). Compared with the model group, the time of first crossing the platform of rats in the EA and oxiracetam group was shortened, the number of crossing platform were increased (P<0.05), the cerebral blood flow was increased (P<0.05), the brain weight was decreased (P<0.05), the morphology and structure of pericyte and endothelial cells in the microvessels of hippocampal CA1 area were intact, accompanied by the increase of tight junctions. Additionally, Compared with the model group, the EA group had a significant increase in the new object preference index (P<0.05), the protein expression levels of PDGFR-ß, CD31, ZO-1 in the EA group were increased (P<0.05), and the expression of PDGFR-ß, N-Cadherin, ZO-1 in the oxiracetam group were increased (P<0.05). CONCLUSIONS: EA at GV20 and GV24 can improve the learning and memory ability of VD rats, and the mechanism may be related to the repair of microvascular structures and improvement of cerebral blood flow.


Asunto(s)
Demencia Vascular , Electroacupuntura , Ratas , Animales , Demencia Vascular/genética , Demencia Vascular/terapia , Demencia Vascular/metabolismo , Ratas Sprague-Dawley , Células Endoteliales/metabolismo , Hipocampo/metabolismo , Cadherinas/metabolismo
3.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-903954

RESUMEN

Nicotinamide adenine dinucleotide phosphate oxidases (NOXs) are the major enzymatic source of reactive oxygen species (ROS). NOX2 and NOX4 are expressed in the heart but its role in hypoxia-induced atrial natriuretic peptide (ANP) secretion is unclear. This study investigated the effect of NOX on ANP secretion induced by hypoxia in isolated beating rat atria. The results showed that hypoxia significantly upregulated NOX4 but not NOX2 expression, which was completely abolished by endothelin-1 (ET-1) type A and B receptor antagonists BQ123 (0.3 µM) and BQ788 (0.3 µM). ET-1-upregulated NOX4 expression was also blocked by antagonists of secreted phospholipase A2 (sPLA2; varespladib, 5.0 µM) and cytosolic PLA2 (cPLA2; CAY10650, 120.0 nM), and ET-1-induced cPLA2 expression was inhibited by varespladib under normoxia. Moreover, hypoxia-increased ANP secretion was evidently attenuated by the NOX4 antagonist GLX351322 (35.0 µM) and inhibitor of ROS N-Acetyl-D-cysteine (NAC, 15.0 mM), and hypoxia-increased production of ROS was blocked by GLX351322. In addition, hypoxia markedly upregulated Src expression, which was blocked by ET receptors, NOX4, and ROS antagonists. ET-1-increased Src expression was also inhibited by NAC under normoxia. Furthermore, hypoxiaactivated extracellular signal-regulated kinase 1/2 (ERK1/2) and protein kinase B (Akt) were completely abolished by Src inhibitor 1 (1.0 µM), and hypoxia-increased GATA4 was inhibited by the ERK1/2 and Akt antagonists PD98059 (10.0 µM) and LY294002 (10.0 µM), respectively. However, hypoxia-induced ANP secretion was substantially inhibited by Src inhibitor. These results indicate that NOX4/Src modulated by ET-1 regulates ANP secretion by activating ERK1/2 and Akt/GATA4 signaling in isolated beating rat hypoxic atria.

4.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-896250

RESUMEN

Nicotinamide adenine dinucleotide phosphate oxidases (NOXs) are the major enzymatic source of reactive oxygen species (ROS). NOX2 and NOX4 are expressed in the heart but its role in hypoxia-induced atrial natriuretic peptide (ANP) secretion is unclear. This study investigated the effect of NOX on ANP secretion induced by hypoxia in isolated beating rat atria. The results showed that hypoxia significantly upregulated NOX4 but not NOX2 expression, which was completely abolished by endothelin-1 (ET-1) type A and B receptor antagonists BQ123 (0.3 µM) and BQ788 (0.3 µM). ET-1-upregulated NOX4 expression was also blocked by antagonists of secreted phospholipase A2 (sPLA2; varespladib, 5.0 µM) and cytosolic PLA2 (cPLA2; CAY10650, 120.0 nM), and ET-1-induced cPLA2 expression was inhibited by varespladib under normoxia. Moreover, hypoxia-increased ANP secretion was evidently attenuated by the NOX4 antagonist GLX351322 (35.0 µM) and inhibitor of ROS N-Acetyl-D-cysteine (NAC, 15.0 mM), and hypoxia-increased production of ROS was blocked by GLX351322. In addition, hypoxia markedly upregulated Src expression, which was blocked by ET receptors, NOX4, and ROS antagonists. ET-1-increased Src expression was also inhibited by NAC under normoxia. Furthermore, hypoxiaactivated extracellular signal-regulated kinase 1/2 (ERK1/2) and protein kinase B (Akt) were completely abolished by Src inhibitor 1 (1.0 µM), and hypoxia-increased GATA4 was inhibited by the ERK1/2 and Akt antagonists PD98059 (10.0 µM) and LY294002 (10.0 µM), respectively. However, hypoxia-induced ANP secretion was substantially inhibited by Src inhibitor. These results indicate that NOX4/Src modulated by ET-1 regulates ANP secretion by activating ERK1/2 and Akt/GATA4 signaling in isolated beating rat hypoxic atria.

6.
Acta Pharmacol Sin ; 40(10): 1269-1278, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31028292

RESUMEN

Curculigoside (CUR) is the main active component of traditional Chinese medicine Curculigoorchioides Gaertn (Xianmao in Chinese), which exhibits a variety of pharmacological activities. In this study we investigated the effects of CUR on fear extinction and related depression-like behaviors in mice. In fear conditioning task, we found that administration of CUR (1.6, 8, 40 mg·kg-1·d-1, ip, for 7 days) did not affect memory consolidation, but CUR at higher doses (8, 40 mg·kg-1·d-1) significantly facilitated fear extinction, especially on D3 and D4. Moreover, CUR administration significantly ameliorated the fear conditioning-induced depression-like behaviors, likely through promoting fear extinction. We showed that CUR increased the expression of brain-derived neurotrophic factor (BDNF) and phosphorylation of tropomyosin receptor kinase B (TrkB) in the hippocampus, and activated protein kinase B (Akt)-mammalian target of the rapamycin (mTOR) signaling pathway. Administration of the selective TrkB agonist 7,8-dihydroxyflavone (7,8-DHF, 5 mg·kg-1·d-1, ip) also facilitated fear extinction, ameliorated depression-like behaviors. We established a mouse learned helplessness (LH) model to evaluate the antidepressant activity of CUR. The spatial memory was assessed in Morris water maze. We showed that LH-induced depression-like behaviors, including prolonged immobility times in forced swim and tail suspension tests as well as spatial memory impairments; LH also downregulated BDNF expression and the Akt-mTOR signaling pathway in the hippocampus. Administration of CUR (1.6, 8, 40 mg·kg-1·d-1, ip, for 14 days) or 7,8-DHF (5 mg·kg-1·d-1, ip, for 3 days) prevented LH-induced depression-like behaviors and promoted BDNF expression and the Akt-mTOR signaling pathway. In conclusion, CUR can accelerate the fear memory extinction and ameliorate depression-like behaviors in mice via promoting BDNF expression and activating the Akt-mTOR signaling pathway in the hippocampus.


Asunto(s)
Conducta Animal/efectos de los fármacos , Benzoatos/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Depresión/tratamiento farmacológico , Modelos Animales de Enfermedad , Glucósidos/farmacología , Desamparo Adquirido , Hipocampo/efectos de los fármacos , Animales , Depresión/metabolismo , Hipocampo/metabolismo , Masculino , Medicina Tradicional China , Ratones , Ratones Endogámicos C57BL
7.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-941820

RESUMEN

Drug induced hypersensitivity syndrome (DIHS) is often manifested as severe systemic drug trans-reactions characterized by acute and extensive skin lesions (mostly measles-like rash), fever, enlargement of lymph nodes, multiple organ involvement (hepatitis, nephritis, and pneumonia), eosinophilia and mononucleosis,within 2-6 weeks of the application of sensitizing drugs. In the early stage of the lesion, macular papules or erythema multiforme were common, and in severe cases, exfoliative dermatitis, Stevens-Johnson syndrome and toxic epidermal necrolysis were also common. Most of them developed after taking allergic drugs for 2-6 weeks (average: 3 weeks). Symptoms persisted after discontinuation of allergic drugs. It takes more than one month to alleviate, which may endanger life in severe cases. Documents report that the most common drugs causing DIHS are phenytoin sodium, carbamazepine and phenobarbital aromatic drugs. However, it was reported that phenobarbital sodium was the most common anticonvulsant among allergenic drugs in children, followed by antipyretics, analgesics and antibiotics, which may be related to the spectrum of childhood diseases and the particularity of the drug. Lamotrigine has been reported to cause DIHS in adults in China, but less in children. In order to improve the understanding of clinical diagnosis and treatment of DIHS in children, reduce misdiagnosis, missed diagnosis, and untimely treatment, and prevent the aggravation of the disease, we studied the case of a 4-year-old 7-month-old girl who presented with systemic erythematous papules, fever, hepatosplenomegaly, marked increase of white blood cells, marked decrease of anemia and platelets, abnormal liver function and coagulation routine after taking lamotrigine for one month due to epilepsy seizures. Now, according to the DIHS diagnostic criteria established by Registration of Severe Cutaneous Adverse Reactions Drug Review Group in 2007, plasma exchange was immediately given to replace the toxic metabolites in hemorrhagic plasma, and methylprednisolone was given intravenously for three days. At the same time, after symptomatic supportive treatments, such as loratadine and albumin, the condition gradually improved without recurrence. Through a case report of Drug reaction with eosinophilia and systemic symptoms in a child caused by lamotrigine, we can strengthen our understanding and improve the level of diagnosis and treatment of drug hypersensitivity syndrome in children. Lamotrigine can cause DIHS in children, which is very dangerous. Early diagnosis and early withdrawal of allergenic drugs, plasma exchange and glucocorticoid therapy are the key to treatment.


Asunto(s)
Preescolar , Femenino , Humanos , Anticonvulsivantes , Carbamazepina , China , Síndrome de Hipersensibilidad a Medicamentos , Lamotrigina
8.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-727988

RESUMEN

Prostaglandin D₂ (PGD₂) may act against myocardial ischemia-reperfusion (I/R) injury and play an anti-inflammatory role in the heart. Although the effect of PGD₂ in regulation of ANP secretion of the atrium was reported, the mechanisms involved are not clearly identified. The aim of the present study was to investigate whether PGD₂ can regulate ANP secretion in the isolated perfused beating rat atrium, and its underlying mechanisms. PGD₂ (0.1 to 10 µM) significantly increased atrial ANP secretion concomitantly with positive inotropy in a dose-dependent manner. Effects of PGD₂ on atrial ANP secretion and mechanical dynamics were abolished by AH-6809 (1.0 µM) and AL-8810 (1.0 µM), PGD₂ and prostaglandin F2α (PGF2α) receptor antagonists, respectively. Moreover, PGD₂ clearly upregulated atrial peroxisome proliferator-activated receptor gamma (PPARγ) and the PGD₂ metabolite 15-deoxy-Δ12,14-PGJ₂ (15d-PGJ₂, 0.1 µM) dramatically increased atrial ANP secretion. Increased ANP secretions induced by PGD₂ and 15d-PGJ₂ were completely blocked by the PPARγ antagonist GW9662 (0.1 µM). PD98059 (10.0 µM) and LY294002 (1.0 µM), antagonists of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling, respectively, significantly attenuated the increase of atrial ANP secretion by PGD₂. These results indicated that PGD₂ stimulated atrial ANP secretion and promoted positive inotropy by activating PPARγ in beating rat atria. MAPK/ERK and PI3K/Akt signaling pathways were each partially involved in regulating PGD₂-induced atrial ANP secretion.


Asunto(s)
Animales , Ratas , Factor Natriurético Atrial , Corazón , Proteínas Quinasas Activadas por Mitógenos , Peroxisomas , Fosfotransferasas , PPAR gamma , Proteínas Quinasas
9.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-727999

RESUMEN

Adenosine 3',5'-cyclic monophosphate (cAMP) participates in the regulation of numerous cellular functions, including the Na(+)-K(+)-ATPase (sodium pump). Ouabain, used in the treatment of several heart diseases, is known to increase cAMP levels but its effects on the atrium are not understood. The aim of the present study was to examine the effect of ouabain on the regulation of atrial cAMP production and its roles in atrial endothelin-1 (ET-1) secretion in isolated perfused beating rabbit atria. Our results showed that ouabain (3.0 micromol/L) significantly increased atrial dynamics and cAMP levels during recovery period. The ouabain-increased atrial dynamics was blocked by KB-R7943 (3.0 micromol/L), an inhibitor for reverse mode of Na(+)-Ca(2+) exchangers (NCX), but did not by L-type Ca2+ channel blocker nifedipine (1.0 micromol/L) or protein kinase A (PKA) selective inhibitor H-89 (3.0 micromol/L). Ouabain also enhanced atrial intracellular cAMP production in response to forskolin and theophyline (100.0 micromol/L), an inhibitor of phosphodiesterase, potentiated the ouabain-induced increase in cAMP. Ouabain and 8-Bromo-cAMP (0.5 micromol/L) markedly increased atrial ET-1 secretion, which was blocked by H-89 and by PD98059 (30 micromol/L), an inhibitor of extracellular-signal-regulated kinase (ERK) without changing ouabain-induced atrial dynamics. Our results demonstrated that ouabain increases atrial cAMP levels and promotes atrial ET-1 secretion via the mitogen-activated protein kinase (MAPK)/ERK signaling pathway. These findings may explain the development of cardiac hypertrophy in response to digitalis-like compounds.


Asunto(s)
8-Bromo Monofosfato de Adenosina Cíclica , Adenosina , Cardiomegalia , Colforsina , Proteínas Quinasas Dependientes de AMP Cíclico , Endotelina-1 , Cardiopatías , Nifedipino , Ouabaína , Fosfotransferasas , Proteínas Quinasas
10.
Zhong Yao Cai ; 37(1): 95-9, 2014 Jan.
Artículo en Chino | MEDLINE | ID: mdl-25090714

RESUMEN

OBJECTIVE: To study the effects of Gambogenic acid (GNA) on the growth of human gastric carcinoma cell line MGC-803 and its underlying mechanisms. METHODS: MTT assay was used to measure the cell viability. Apoptosis, mitochondrial membrane potential (MMP), reactive oxygen species (ROS) were detected using flow cytometry method. Among them, Annexin V-FITC/PI double staining was employed in the analysis of apoptosis, Rh123 in analyzing MMP and H2DCFDA in analyzing ROS formation. P53 expression was confirmed by Western blot. RESULTS: 4.0 micromol/L GNA inhibited MGC-803 cells growth in a time dependent manner from 24 to 48 h. At the concentration range from 1.0 to 12.0 micromol/L, the inhibitory effect was in a concentration dependent manner. After treatment with 4.0 micromol/L GNA for 48 h, apoptosis was obviously observed as assayed by Annexin V-FITC/PI staining. Importantly, MMP was decreased and ROS formation was increased following GNA treatment. Additionally, P53 expression was up-regulated following 4.0 micromol/ L GNA treatment in a time dependent manner. CONCLUSION: GNA induces mitochondria-dependent apoptosis and increases P53 expression in human gastric carcinoma cell line.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Mitocondrias/metabolismo , Neoplasias Gástricas/patología , Xantenos/farmacología , Western Blotting , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Citometría de Flujo , Garcinia/química , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Neoplasias Gástricas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA