Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(19): 10782-10794, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37702119

RESUMEN

Phosphorothioate (PT)-modification was discovered in prokaryotes and is involved in many biological functions such as restriction-modification systems. PT-modification can be recognized by the sulfur binding domains (SBDs) of PT-dependent restriction endonucleases, through coordination with the sulfur atom, accompanied by interactions with the DNA backbone and bases. The unique characteristics of PT recognition endow SBDs with the potential to be developed into gene-targeting tools, but previously reported SBDs display sequence-specificity for PT-DNA, which limits their applications. In this work, we identified a novel sequence-promiscuous SBDHga from Hahella ganghwensis. We solved the crystal structure of SBDHga complexed with PT-DNA substrate to 1.8 Å resolution and revealed the recognition mechanism. A shorter L4 loop of SBDHga interacts with the DNA backbone, in contrast with previously reported SBDs, which interact with DNA bases. Furthermore, we explored the feasibility of using SBDHga and a PT-oligonucleotide as targeting tools for site-directed adenosine-to-inosine (A-to-I) RNA editing. A GFP non-sense mutant RNA was repaired at about 60% by harnessing a chimeric SBD-hADAR2DD (deaminase domain of human adenosine deaminase acting on RNA), comparable with currently available RNA editing techniques. This work provides insights into understanding the mechanism of sequence-specificity for SBDs and for developing new tools for gene therapy.


Asunto(s)
Edición de ARN , Humanos , Adenosina Desaminasa/metabolismo , ADN/química , Edición Génica , ARN/metabolismo , Azufre/química
2.
Microbiol Res ; 252: 126852, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34454309

RESUMEN

The SOS response-associated peptidase (SRAP) is an ancient protein superfamily in all domains of life. The mammalian SRAP was recently reported to covalently bind to the abasic sites (AP) in single stranded (ss) DNA to shield the chromosome integrity. YedK, the Escherichia coli SRAP, is not functionally characterized. Here we report the fortuitous pull-down of YedK from bacterial cell lysates by short (<20 bp) double stranded (ds) DNAs, further enrichment of YedK was observed when single stranded (ss) DNA was added. YedK can bind multiple DNA substrates, particularly with a high affinity to DNA duplex with single strand segment. As a SRAP protein, the involvement of YedK in SOS response was extensively examined, however yedK mutant of Escherichia coli showed no difference from the wild type strain upon the treatments with UV and various DNA damaging reagents, indicating its non-essentiality or redundancy in E. coli. Surprisingly, yedK mutants derived from Escherichia coli and Samonella enterica both showed an increased plasmid DNA transformation efficiency compared to the wild types. In accordance with this, induction of YedK effectively decreased the copy number of plasmid DNA. Site-directed mutagenesis of YedK demonstrated that residues involved in single strand DNA binding and cysteine residue at position 2 from N-terminus can discharge the repression of the plasmid transformation efficiency.


Asunto(s)
Replicación del ADN , ADN de Cadena Simple , Proteínas de Unión al ADN , Proteínas de Escherichia coli , Escherichia coli , Plásmidos , Transformación Bacteriana , Replicación del ADN/genética , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Plásmidos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA