Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 323
Filtrar
1.
Arch Microbiol ; 206(11): 423, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39361043

RESUMEN

Minor ginsenosides produced by ß-glucosidase are interesting biologically and pharmacologically. In this study, new ginsenoside-hydrolyzing glycosidase from Furfurilactobacillus rossiae DCYL3 was cloned and expressed in Escherichia coli strain BL21. The enzyme converted Rb1 and Gyp XVII into Rd and compound K following the pathways: Rb1→Rd and Gyp XVII→F2→CK, respectively at optimal condition: 40 °C, 15 min, and pH 6.0. Furthermore, we examined the cytotoxicity, NO production, ROS generation, and gene expression of Gynostemma extract (GE) and bioconverted Gynostemma extract (BGE) in vitro against A549 cell lines for human lung cancer and macrophage RAW 264.7 cells for antiinflammation, respectively. As a result, BGE demonstrated significantly greater toxicity than GE against lung cancer at a dose of 500 µg/mL but in normal cells showed lower toxicity. Then, we indicated an enhanced generation of ROS, which may be boosting cancer cell toxicity. By blocking the intrinsic way, BGE increased p53, Bax, Caspase 3, 9, and while Bcl2 is decreased. At 500 µg/mL, the BGE sample was less toxic in normal cells and decreased the LPS-treated NO and ROS level to reduce inflammation. In addition, BGE inhibited the expression of pro-inflammatory genes COX-2, iNOS, IL-6, and IL-8 in RAW 264.7 cells than the sample of GE. In conclusion, FrBGL3 has considerable downstream applications for high-yield, low-cost, effective manufacture of minor ginsenosides. Moreover, the study's findings imply that BGE would be potential materials for anti-cancer and anti-inflammatory agent after consideration of future studies.


•The first time ß-glucosidase (FrBGL3) from Furfurilactobacillus rossiae was identified and characterized.•FrBGL3 activity in ginsenoside and gypenoside bioconversion were found and confirmed.•Application in Gynostemma extract bioconversion by FrBGL3 boosts anti-inflammatory and anti-cancer activities.


Asunto(s)
beta-Glucosidasa , Ratones , Animales , Humanos , Células RAW 264.7 , Células A549 , beta-Glucosidasa/genética , beta-Glucosidasa/metabolismo , beta-Glucosidasa/química , Clonación Molecular , Ginsenósidos/metabolismo , Ginsenósidos/farmacología , Escherichia coli/genética , Escherichia coli/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Macrófagos/efectos de los fármacos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Óxido Nítrico/metabolismo , Clostridiales/genética , Clostridiales/enzimología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo
2.
Heliyon ; 10(15): e34993, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39157308

RESUMEN

This study explored the neuroprotective potential of fermented pomegranate (PG-F) against hydrogen peroxide (H2O2)-induced neurotoxicity in human neuroblastoma SH-SY5Y cells and elucidated the underlying molecular mechanisms. The fermentation process, involving probiotics, transforms the hydrolyzable tannins in pomegranate juice into ellagic acid (EA) and gallic acid (GA), which are believed to contribute to its health benefits. Molecular docking simulations confirmed the stable interactions between EA, GA, and proteins associated with the antioxidant and anti-apoptotic pathways. PG-F significantly enhanced the viability of H2O2-treated cells, as evidenced by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, cell morphology observations, and Hoechst 33342 staining. PG-F mitigated the H2O2-induced intracellular reactive oxygen species (ROS) levels, restored mitochondrial membrane potential, and upregulated antioxidant gene expression. The PG-F treatment also attenuated the H2O2-induced imbalance in the Bax/Bcl-2 ratio and reduced the cleaved caspase-3, caspase-7, and caspase-9 levels, suppressing the apoptotic pathways. Further insights showed that PG-F inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs) and facilitated the nuclear translocation of nuclear factor-erythroid 2-related factor (Nrf2), highlighting its role in modulating the key signaling pathways. A combined treatment with equivalent concentrations of EA and GA, as found in PG-F, induced remarkable cellular protection. Drug combination analysis using the Chou-Talalay method revealed a synergistic effect between EA and GA, emphasizing their combined efficacy. In conclusion, PG-F has significant neuroprotective effects against H2O2-induced neurotoxicity by modulating the antioxidant and anti-apoptotic pathways. The synergistic action of EA and GA suggests the therapeutic potential of PG-F in alleviating oxidative stress-associated neurodegenerative diseases.

3.
Int J Mol Sci ; 25(13)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39000355

RESUMEN

Postmenopausal osteoporosis, characterized by an imbalance between osteoclast-mediated bone resorption and osteoblast-driven bone formation, presents substantial health implications. In this study, we investigated the role of black goat extract (BGE), derived from a domesticated native Korean goat, estrogen-like activity, and osteoprotective effects in vitro. BGE's mineral and fatty acid compositions were analyzed via the ICP-AES method and gas chromatography-mass spectrometry, respectively. In vitro experiments were conducted using MCF-7 breast cancer cells, MC3T3-E1 osteoblasts, and RAW264.7 osteoclasts. BGE exhibits a favorable amount of mineral and fatty acid content. It displayed antimenopausal activity by stimulating MCF-7 cell proliferation and augmenting estrogen-related gene expression (ERα, ERß, and pS2). Moreover, BGE positively impacted osteogenesis and mineralization in MC3T3-E1 cells through Wnt/ß-catenin pathway modulation, leading to heightened expression of Runt-related transcription factor 2, osteoprotegerin, and collagen type 1. Significantly, BGE effectively suppressed osteoclastogenesis by curtailing osteoclast formation and activity in RAW264.7 cells, concurrently downregulating pivotal signaling molecules, including receptor activator of nuclear factor κ B and tumor necrosis factor receptor-associated factor 6. This study offers a shred of preliminary evidence for the prospective use of BGE as an effective postmenopausal osteoporosis treatment.


Asunto(s)
Diferenciación Celular , Cabras , Osteoblastos , Osteoclastos , Osteogénesis , Animales , Ratones , Células RAW 264.7 , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteogénesis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteoclastos/citología , Humanos , Estrógenos/farmacología , Proliferación Celular/efectos de los fármacos , Vía de Señalización Wnt/efectos de los fármacos , Células MCF-7 , Extractos de Tejidos/farmacología
4.
Curr Issues Mol Biol ; 46(6): 5488-5510, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38921000

RESUMEN

The PHLDA (pleckstrin homology-like domain family) gene family is popularly known as a potential biomarker for cancer identification, and members of the PHLDA family have become considered potentially viable targets for cancer treatments. The PHLDA gene family consists of PHLDA1, PHLDA2, and PHLDA3. The predictive significance of PHLDA genes in cancer remains unclear. To determine the role of pleckstrin as a prognostic biomarker in human cancers, we conducted a systematic multiomics investigation. Through various survival analyses, pleckstrin expression was evaluated, and their predictive significance in human tumors was discovered using a variety of online platforms. By analyzing the protein-protein interactions, we also chose a collection of well-known functional protein partners for pleckstrin. Investigations were also carried out on the relationship between pleckstrins and other cancers regarding mutations and copy number alterations. The cumulative impact of pleckstrin and their associated genes on various cancers, Gene Ontology (GO), and pathway analyses were used for their evaluation. Thus, the expression profiles of PHLDA family members and their prognosis in various cancers may be revealed by this study. During this multiomics analysis, we found that among the PHLDA family, PHLDA1 may be a therapeutic target for several cancers, including kidney, colon, and brain cancer, while PHLDA2 can be a therapeutic target for cancers of the colon, esophagus, and pancreas. Additionally, PHLDA3 may be a useful therapeutic target for ovarian, renal, and gastric cancer.

5.
Curr Issues Mol Biol ; 46(4): 3328-3341, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38666938

RESUMEN

Kidney cancer has emerged as a major medical problem in recent times. Multiple compounds are used to treat kidney cancer by triggering cancer-causing gene targets. For instance, isoquercitrin (quercetin-3-O-ß-d-glucopyranoside) is frequently present in fruits, vegetables, medicinal herbs, and foods and drinks made from plants. Our previous study predicted using protein-protein interaction (PPI) and molecular docking analysis that the isoquercitrin compound can control kidney cancer and inflammation by triggering potential gene targets of IGF1R, PIK3CA, IL6, and PTGS2. So, the present study is about further in silico and in vitro validation. We performed molecular dynamic (MD) simulation, gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, cytotoxicity assay, and RT-PCR and qRT-PCR validation. According to the MD simulation (250 ns), we found that IGF1R, PIK3CA, and PTGS2, except for IL6 gene targets, show stable binding energy with a stable complex with isoquercitrin. We also performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of the final targets to determine their regulatory functions and signaling pathways. Furthermore, we checked the cytotoxicity effect of isoquercitrin (IQ) and found that 5 µg/mL and 10 µg/mL doses showed higher cell viability in a normal kidney cell line (HEK 293) and also inversely showed an inhibition of cell growth at 35% and 45%, respectively, in the kidney cancer cell line (A498). Lastly, the RT-PCR and qRT-PCR findings showed a significant decrease in PTGS2, PIK3CA, and IGF1R gene expression, except for IL6 expression, following dose-dependent treatments with IQ. Thus, we can conclude that isoquercitrin inhibits the expression of PTGS2, PIK3CA, and IGF1R gene targets, which in turn controls kidney cancer and inflammation.

6.
Arch Microbiol ; 206(4): 137, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38436734

RESUMEN

Butyrate, a short-chain fatty acid (SCFA) produced by bacterial fermentation of fiber in the colon, is a source of energy for colonocytes. Butyrate is essential for improving gastrointestinal (GI) health since it helps colonocyte function, reduces inflammation, preserves the gut barrier, and fosters a balanced microbiome. Human colonic butyrate producers are Gram-positive firmicutes, which are phylogenetically varied. The two most prevalent subgroups are associated with Eubacterium rectale/Roseburia spp. and Faecalibacterium prausnitzii. Now, the mechanism for the production of butyrate from microbes is a very vital topic to know. In the present study, we discuss the genes encoding the core of the butyrate synthesis pathway and also discuss the butyryl-CoA:acetate CoA-transferase, instead of butyrate kinase, which usually appears to be the enzyme that completes the process. Recently, butyrate-producing microbes have been genetically modified by researchers to increase butyrate synthesis from microbes. The activity of butyrate as a histone deacetylase inhibitor (HDACi) has led to several clinical trials to assess its effectiveness as a potential cancer treatment. Among various significant roles, butyrate is the main energy source for intestinal epithelial cells, which helps maintain colonic homeostasis. Moreover, people with non-small-cell lung cancer (NSCLC) have distinct gut microbiota from healthy adults and frequently have dysbiosis of the butyrate-producing bacteria in their guts. So, with an emphasis on colon and lung cancer, this review also discusses how the microbiome is crucial in preventing the progression of certain cancers through butyrate production. Further studies should be performed to investigate the underlying mechanisms of how these specific butyrate-producing bacteria can control both colon and lung cancer progression and prognosis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Colorrectales , Neoplasias Pulmonares , Adulto , Humanos , Neoplasias Pulmonares/prevención & control , Ácidos Grasos Volátiles , Butiratos , Neoplasias Colorrectales/prevención & control
7.
Med Sci Monit ; 30: e942899, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38509819

RESUMEN

BACKGROUND The gut microbial metabolites demonstrate significant activity against metabolic diseases including osteoporosis (OP) and obesity, but active compounds, targets, and mechanisms have not been fully identified. Hence, the current investigation explored the mechanisms of active metabolites and targets against OP and obesity by using network pharmacology approaches. MATERIAL AND METHODS The gutMGene database was used to collect gut microbial targets-associated metabolites; DisGeNET and OMIM databases were used to identify targets relevant to OP and obesity. A total of 63 and 89 overlapped targets were considered the final OP and obesity targets after creating a Venn diagram of metabolites-related targets and disease-related targets. Furthermore, the top 20% of degrees, betweenness, and closeness were used to form the sub-network of protein-protein interaction of these targets. Finally, the biotransformation-increased receptors and biological mechanisms were identified and validated using ADMET properties analysis, molecular docking, and molecular dynamic simulation. RESULTS GO, KEGG pathway analysis, and protein-protein interactions were performed to establish metabolites and target networks. According to the enrichment analysis, OP and obesity are highly linked to the lipid and atherosclerosis pathways. Moreover, ADMET analysis depicts that the major metabolites have drug-likeliness activity and no or less toxicity. Following that, the molecular docking studies showed that compound K and TP53 target have a remarkable negative affinity (-8.0 kcal/mol) among all metabolites and targets for both diseases. Finally, the conformity of compound K against the targeted protein TP53 was validated by 250ns MD simulation. CONCLUSIONS Therefore, we summarized that compound K can regulate TP53 and could be developed as a therapy option for OP and obesity.


Asunto(s)
Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Ginsenósidos , Osteoporosis , Humanos , Simulación del Acoplamiento Molecular , Farmacología en Red , Biología Computacional , Simulación de Dinámica Molecular , Obesidad/tratamiento farmacológico , Osteoporosis/tratamiento farmacológico
8.
Curr Issues Mol Biol ; 46(3): 2320-2342, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38534764

RESUMEN

Rare ginsenoside compound K (CK) is an intestinal microbial metabolite with a low natural abundance that is primarily produced by physicochemical processing, side chain modification, or metabolic transformation in the gut. Moreover, CK exhibits potent biological activity compared to primary ginsenosides, which has raised concerns in the field of ginseng research and development, as well as ginsenoside-related dietary supplements and natural products. Ginsenosides Rb1, Rb2, and Rc are generally used as a substrate to generate CK via several bioconversion processes. Current research shows that CK has a wide range of pharmacological actions, including boosting osteogenesis, lipid and glucose metabolism, lipid oxidation, insulin resistance, and anti-inflammatory and anti-apoptosis properties. Further research on the bioavailability and toxicology of CK can advance its medicinal application. The purpose of this review is to lay the groundwork for future clinical studies and the development of CK as a therapy for metabolic disorders. Furthermore, the toxicology and pharmacology of CK are investigated as well in this review. The findings indicate that CK primarily modulates signaling pathways associated with AMPK, SIRT1, PPARs, WNTs, and NF-kB. It also demonstrates a positive therapeutic effect of CK on non-alcoholic fatty liver disease (NAFLD), obesity, hyperlipidemia, diabetes, and its complications, as well as osteoporosis. Additionally, the analogues of CK showed more bioavailability, less toxicity, and more efficacy against disease states. Enhancing bioavailability and regulating hazardous variables are crucial for its use in clinical trials.

9.
ACS Pharmacol Transl Sci ; 7(3): 560-569, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38481689

RESUMEN

Obesity is a well-established risk factor for cancer, significantly impacting both cancer incidence and mortality. However, the intricate molecular mechanisms connecting adipose tissue to cancer cell metabolism are not fully understood. This Review explores the historical context of tumor energy metabolism research, tracing its origins to Otto Warburg's pioneering work in 1920. Warburg's discovery of the "Warburg effect", wherein cancer cells prefer anaerobic glycolysis even in the presence of oxygen, laid the foundation for understanding cancer metabolism. Building upon this foundation, the "reverse Warburg effect" emerged in 2009, elucidating the role of aerobic glycolysis in cancer-associated fibroblasts (CAFs) and its contribution to lactate accumulation in the tumor microenvironment, subsequently serving as a metabolic substrate for cancer cells. In contrast, within high-adiposity contexts, cancer cells exhibit a unique metabolic shift termed the "inversion of the Warburg effect". This phenomenon, distinct from the stromal-dependent reverse Warburg effect, relies on increased nutrient abundance in obesity environments, leading to the generation of glucose from lactate as a metabolic substrate. This Review underscores the heightened tumor proliferation and aggressiveness associated with obesity, introducing the "inversion of the Warburg effect" as a novel mechanism rooted in the altered metabolic landscape within an obese milieu. The insights presented here open promising avenues for therapeutic exploration, offering fresh perspectives and opportunities for the development of innovative cancer treatment strategies.

10.
Microbiol Res ; 281: 127595, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38218095

RESUMEN

Atopic dermatitis (AD) is a prevalent inflammatory skin condition that commonly occurs in children. Genetics, environment, and defects in the skin barrier are only a few of the factors that influence how the disease develops. As human microbiota research has advanced, more scientific evidence has shown the critical involvement of the gut and skin bacteria in the pathogenesis of atopic dermatitis. Microbiome dysbiosis, defined by changed diversity and composition, as well as the development of pathobionts, has been identified as a potential cause for recurring episodes of atopic dermatitis. Gut dysbiosis causes "leaky gut syndrome" by disrupting the epithelial lining of the gut, which allows bacteria and other endotoxins to enter the bloodstream and cause inflammation. The same is true for the disruption of cutaneous homeostasis caused by skin dysbiosis, which enables bacteria and other pathogens to reach deeper skin layers or even systemic circulation, resulting in inflammation. Furthermore, it is now recognized that the gut and skin microbiota releases both beneficial and toxic metabolites. Here, this review covers a range of topics related to AD, including its pathophysiology, the microbiota-AD connection, commonly used treatments, and the significance of metabolomics in AD prevention, treatment, and management, recognizing its potential in providing valuable insights into the disease.


Asunto(s)
Dermatitis Atópica , Microbiota , Niño , Humanos , Dermatitis Atópica/etiología , Dermatitis Atópica/patología , Dermatitis Atópica/terapia , Disbiosis , Piel/microbiología , Inflamación , Metaboloma
11.
Plants (Basel) ; 12(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38068580

RESUMEN

Auxin-responsive factors (ARFs) are an important class of transcription factors and are an important component of auxin signaling. This study conducted a genome-wide analysis of the ARF gene family in ginseng and presented its findings. Fifty-three ARF genes specific to ginseng (PgARF) were discovered after studying the ginseng genome. The coding sequence (CDS) has a length of 1092-4098 base pairs and codes for a protein sequence of 363-1565 amino acids. Among them, PgARF32 has the least number of exons (2), and PgARF16 has the most exons (18). These genes were then distributed into six subgroups based on the results obtained from phylogenetic analysis. In each subgroup, the majority of the PgARF genes displayed comparable intron/exon structures. PgARF genes are unevenly distributed on 20 chromosomes. Most PgARFs have B3 DNA binding, Auxin_resp, and PB1 domains. The PgARF promoter region contains various functional domains such as plant hormones, light signals, and developmental functions. Segmental duplications contribute to the expansion of the ARF gene family in ginseng, and the genes have undergone purifying selection during evolution. Transcriptomic results showed that some PgARFs had different expression patterns in different parts of ginseng; most PgARFs were affected by exogenous hormones, and a few PgARFs responded to environmental stress. It is suggested that PgARF is involved in the development of ginseng by regulating hormone-mediated genes. PgARF14, PgARF42, and PgARF53 are all situated in the nucleus, and both PgARR14 and PgARF53 noticeably enhance the growth length of roots in Arabidopsis. Our findings offer a theoretical and practical foundation for exploring PgARFs' role in the growth of ginseng roots.

12.
Biomolecules ; 13(11)2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-38002360

RESUMEN

(1) Background: A large and diverse microbial population exists in the human intestinal tract, which supports gut homeostasis and the health of the host. Short-chain fatty acid (SCFA)-secreting microbes also generate several metabolites with favorable regulatory effects on various malignancies and immunological inflammations. The involvement of intestinal SCFAs in kidney diseases, such as various kidney malignancies and inflammations, has emerged as a fascinating area of study in recent years. However, the mechanisms of SCFAs and other metabolites produced by SCFA-producing bacteria against kidney cancer and inflammation have not yet been investigated. (2) Methods: We considered 177 different SCFA-producing microbial species and 114 metabolites from the gutMgene database. Further, we used different online-based database platforms to predict 1890 gene targets associated with metabolites. Moreover, DisGeNET, OMIM, and Genecard databases were used to consider 13,104 disease-related gene targets. We used a Venn diagram and various protein-protein interactions (PPIs), KEGG pathways, and GO analyses for the functional analysis of gene targets. Moreover, the subnetwork of protein-protein interactions (through string and cytoscape platforms) was used to select the top 20% of gene targets through degree centrality, betweenness centrality, and closeness centrality. To screen the possible candidate compounds, we performed an analysis of the ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties of metabolites and then found the best binding affinity using molecular docking simulation. (3) Results: Finally, we found the key gene targets that interact with suitable compounds and function against kidney cancer and inflammation, such as MTOR (with glycocholic acid), PIK3CA (with 11-methoxycurvularin, glycocholic acid, and isoquercitrin), IL6 (with isoquercitrin), PTGS2 (with isoquercitrin), and IGF1R (with 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine, isoquercitrin), showed a lower binding affinity. (4) Conclusions: This study provides evidence to support the positive effects of SCFA-producing microbial metabolites that function against kidney cancer and inflammation and makes integrative research proposals that may be used to guide future studies.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Simulación del Acoplamiento Molecular , Farmacología en Red , Inflamación , Ácido Glicocólico
13.
Heliyon ; 9(9): e19341, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37809955

RESUMEN

SARS-CoV-2 is a novel coronavirus that emerged as an epidemic, causing a respiratory disease with multiple severe symptoms and deadly consequences. ACE-2 and TMPRSS2 play crucial and synergistic roles in the membrane fusion and viral entry of SARS-CoV-2 (COVID-19). The spike (S) protein of SARS-CoV-2 binds to the ACE-2 receptor for viral entry, while TMPRSS2 proteolytically cleaves the S protein into S1 and S2 subunits, promoting membrane fusion. Therefore, ACE-2 and TMPRSS2 are potential drug targets for treating COVID-19, and their inhibition is a promising strategy for treatment and prevention. This study proposes that ginsenoside compound K (G-CK), a triterpenoid saponin abundant in Panax Ginseng, a dietary and medicinal herb highly consumed in Korea and China, effectively binds to and inhibits ACE-2 and TMPRSS2 expression. We initially conducted an in-silico evaluation where G-CK showed a high affinity for the binding sites of the two target proteins of SARS-CoV-2. Additionally, we evaluated the stability of G-CK using molecular dynamics (MD) simulations for 100 ns, followed by MM-PBSA calculations. The MD simulations and free energy calculations revealed that G-CK has stable and favorable energies, leading to strong binding with the targets. Furthermore, G-CK suppressed ACE2 and TMPRSS2 mRNA expression in A549, Caco-2, and MCF7 cells at a concentration of 12.5 µg/mL and in LPS-induced RAW 264.7 cells at a concentration of 6.5 µg/mL, without significant cytotoxicity.ACE2 and TMPRSS2 expression were significantly lower in A549 and RAW 264.7 cells following G-CK treatment. These findings suggest that G-CK may evolve as a promising therapeutic against COVID-19.

14.
Plants (Basel) ; 12(17)2023 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-37687411

RESUMEN

The use of in vitro tissue culture for herbal medicines has been recognized as a valuable source of botanical secondary metabolites. The tissue culture of ginseng species is used in the production of bioactive compounds such as phenolics, polysaccharides, and especially ginsenosides, which are utilized in the food, cosmetics, and pharmaceutical industries. This review paper focuses on the in vitro culture of Panax ginseng and accumulation of ginsenosides. In vitro culture has been applied to study organogenesis and biomass culture, and is involved in direct organogenesis for rooting and shooting from explants and in indirect morphogenesis for somatic embryogenesis via the callus, which is a mass of disorganized cells. Biomass production was conducted with different types of tissue cultures, such as adventitious roots, cell suspension, and hairy roots, and subsequently on a large scale in a bioreactor. This review provides the cumulative knowledge of biotechnological methods to increase the ginsenoside resources of P. ginseng. In addition, ginsenosides are summarized at enhanced levels of activity and content with elicitor treatment, together with perspectives of new breeding tools which can be developed in P. ginseng in the future.

15.
Front Nutr ; 10: 1168095, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37621738

RESUMEN

Dendropanax morbifera (DM), a medicinal plant, is rich in polyphenols and commonly used to treat cancer, inflammation, and thrombosis. However, to date, no study has been conducted on DM regarding the enormous drift of secondary metabolites of plants in different regions of the Republic of Korea and their effects on antiobesity, to explore compounds that play an important role in two major obesity-related pathways. Here, we present an in-depth study on DM samples collected from three regions of the Republic of Korea [Jeju Island (DMJ), Bogildo (DMB), and Jangheung (DMJG)]. We used high-performance liquid chromatography (HPLC) and multivariate component analyses to analyze polyphenol contents (neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, and rutin), followed by discrimination of the samples in DMJG using single nucleotide polymorphism and chemometric analysis. In silico and in vitro evaluation of major compounds found in the plant extract on two major anti-obesity pathways (adipogenesis and thermogenesis) was carried out. Furthermore, two extraction methods (Soxhlet and ultrasound-assisted extraction) were used to understand which method is better and why. Upon quantifying plant samples in three regions with the polyphenols, DMJG had the highest content of polyphenols. The internal transcribed region (ITS) revealed a specific gel-based band for the authentication of DMJG. PCA and PLS-DA revealed the polyphenol's discriminative power of the region DMJG. The anti-obesity effects of plant extracts from the three regions were related to their polyphenol contents, with DMJG showing the highest effect followed by DMJ and DMB. Ultrasound-assisted extraction yielded a high number of polyphenols compared to that of the Soxhlet method, which was supported by scanning electron microscopy. The present work encourages studies on plants rich in secondary metabolites to efficiently use them for dietary and therapeutic purposes.

16.
Molecules ; 28(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37175202

RESUMEN

BACKGROUND AND OBJECTIVE: The ginsenoside compound K (C-K) (which is a de-glycosylated derivative of major ginsenosides) is effective in the treatment of cancer, diabetes, inflammation, allergy, angiogenesis, aging, and has neuroprotective, and hepatoprotective than other minor ginsenosides. Thus, a lot of studies have been focused on the conversion of major ginsenosides to minor ginsenosides using glycoside hydrolases but there is no study yet published for the bioconversion of minor ginsenosides into another high pharmacological active compound. Therefore, the objective of this study to identify a new gene (besides the glycoside hydrolases) for the conversion of minor ginsenosides C-K into another highly pharmacological active compound. METHODS AND RESULTS: Lactobacillus brevis which was isolated from Kimchi has showed the ginsenoside C-K altering capabilities. From this strain, a novel potent decarboxylation gene, named HSDLb1, was isolated and expressed in Escherichia coli BL21 (DE3) using the pMAL-c5X vector system. Recombinant HSDLb1 was also characterized. The HSDLb1 consists of 774 bp (258 amino acids residues) with a predicted molecular mass of 28.64 kDa. The optimum enzyme activity was recorded at pH 6.0-8.0 and temperature 30 °C. Recombinant HSDLb1 effectively transformed the ginsenoside C-K to 12-ß-hydroxydammar-3-one-20(S)-O-ß-D-glucopyranoside (3-oxo-C-K). The experimental data proved that recombinant HSDLb1 strongly ketonized the hydroxyl (-O-H) group at C-3 of C-K via the following pathway: C-K → 3-oxo-C-K. In vitro study, 3-oxo-C-K showed higher solubility than C-K, and no cytotoxicity to fibroblast cells. In addition, 3-oxo-C-K induced the inhibitory activity of ultraviolet A (UVA) against matrix metalloproteinase-1 (MMP-1) and promoted procollagen type I synthesis. Based on these expectations, we hypothesized that 3-oxo-C-K can be used in cosmetic products to block UV radiations and anti-ageing agent. Furthermore, we expect that 3-oxo-C-K will show higher efficacy than C-K for the treatment of cancer, ageing and other related diseases, for which more studies are needed.


Asunto(s)
Ginsenósidos , Humanos , Ginsenósidos/química , Biotransformación , Glicósido Hidrolasas/metabolismo , Fibroblastos/metabolismo , 3-Hidroxiesteroide Deshidrogenasas/metabolismo , beta-Glucosidasa/metabolismo
17.
Bioengineering (Basel) ; 10(4)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37106671

RESUMEN

Ginsenosides are a group of bioactive compounds isolated from Panax ginseng. Conventional major ginsenosides have a long history of use in traditional medicine for both illness prevention and therapy. Bioconversion processes have the potential to create new and valuable products in pharmaceutical and biological activities, making them both critical for research and highly economic to implement. This has led to an increase in the number of studies that use major ginsenosides as a precursor to generate minor ones using ß-glucosidase. Minor ginsenosides may also have useful properties but are difficult to isolate from raw ginseng because of their scarcity. Bioconversion processes have the potential to create novel minor ginsenosides from the more abundant major ginsenoside precursors in a cost-effective manner. While numerous bioconversion techniques have been developed, an increasing number of studies have reported that ß-glucosidase can effectively and specifically generate minor ginsenosides. This paper summarizes the probable bioconversion mechanisms of two protopanaxadiol (PPD) and protopanaxatriol (PPT) types. Other high-efficiency and high-value bioconversion processes using complete proteins isolated from bacterial biomass or recombinant enzymes are also discussed in this article. This paper also discusses the various conversion and analysis methods and their potential applications. Overall, this paper offers theoretical and technical foundations for future studies that will be both scientifically and economically significant.

18.
Med Res Rev ; 43(5): 1374-1410, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36939049

RESUMEN

Among 17 Panax species identified across the world, Panax ginseng (Korean ginseng), Panax quinquefolius (American ginseng), and Panax notoginseng (Chinese ginseng) are highly recognized for the presence of bioactive compound, ginsenosides and their pharmacological effects. P. ginseng is widely used for synthesis of different types of nanoparticles compared to P. quinquefolius and P. notoginseng. The use of nano-ginseng could increase the oral bioavailability, membrane permeability, and thus provide effective delivery of ginsenosides to the target sites through transport system. In this review, we explore the synthesis of ginseng nanoparticles using plant extracts from various organs, microbes, and polymers, as well as their biomedical applications. Furthermore, we highlight transporters involved in transport of ginsenoside nanoparticles to the target sites. Size, zeta potential, temperature, and pH are also discussed as the critical parameters affecting the quality of ginseng nanoparticles synthesis.


Asunto(s)
Ginsenósidos , Panax , Humanos , Ginsenósidos/farmacología , Panax/química , Extractos Vegetales/química
19.
Int Immunopharmacol ; 118: 110018, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36989894

RESUMEN

Tuft cells, also known as taste chemosensory cells, accumulate during parasite colonization or infection and have powerful immunomodulatory effects on substances that could be detrimental, as well as possible anti-inflammatory or antibacterial effects. Tuft cells are the primary source of interleukin (IL)-25. They trigger extra Innate lymphoid type-2 cells (ILC2) in the intestinal lamina propria to create cytokines (type 2); for instance, IL-13, which leads to an increase in IL-25. As tuft cells can produce biological effector molecules, such as IL-25 and eicosanoids involved in allergy (for example, cysteinyl leukotrienes and prostaglandin D2) and the neurotransmitter acetylcholine. Following parasite infection, tuft cells require transient receptor potential cation channel subfamily M member 5 (TRPM5)-dependent chemosensation to produce responses. Secretory tuft cells provide a physical mucus barrier against the external environment and therefore have vital defensive roles against diseases by supporting tissue maintenance and repair. In addition to recent research on tuft cells, more studies are required to understand the distribution, cell turnover, molecular characteristics, responses in various species, involvement in immunological function across tissues, and most importantly, the mechanism involved in the control of various diseases.


Asunto(s)
Inmunidad Innata , Linfocitos , Mucosa Intestinal , Citocinas , Interleucina-13
20.
Molecules ; 28(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36903444

RESUMEN

Postmenopausal women experience several symptoms, including inflammation and a sharp rise in oxidative stress caused by estrogen deprivation. Although estrogen replacement therapy (ERT) is generally regarded as an effective treatment for menopause, it has been used less frequently due to some adverse effects and high costs. Therefore, there is an immediate need to develop an effective herbal-based treatment that is affordable for low-income populations. Acordingly, this study explored the estrogen-like properties of methanol extracts from Cynanchum wilfordii (CW) and Poligonum multiflorum (PM), two important medicinal plants in Republic of Korea, Japan, and China. Due to the similar names and morphologies of these two radixes, they are frequently confused in the marketplace. Our previous colleagues discriminated between these two plants. In this study, we investigated the estrogenic activity of PM and CW using several in vitro assays with their possible mechanism of action. First, their phytochemical contents, such as gallic acid, 2,3,5,4'-tetrahydroxystilbene-2-O-glucoside (TSG) and emodin, were quantified using high-performance liquid chromatography (HPLC). Secondly, estrogen-like activity was assessed utilizing the well-known E-screen test and gene expression analysis in estrogen receptor (ER)-positive MCF7 cells. ROS inhibition and anti-inflammatory effects were analyzed using HaCaT and Raw 264.7 cells, respectively. Our findings demonstrate that PM extracts significantly increased the expression of the estrogen-dependent genes (ERα, ERß, pS2) and boosted MCF7 cell proliferation in comparison to CW extracts. Additionally, PM extract demonstrated a significant reduction in reactive oxygen species (ROS) production as well as an enhanced antioxidant profile compared to the CW extract. Further, the PM extract treatment significantly reduced the generation of nitric oxide (NO) in RAW 264.7 cells, a murine macrophage cell line, demonstrating the anti-inflammatory properties of the extract. Finally, this research offers an experimental foundation for the use of PM as a phytoestrogen to minimize menopausal symptoms.


Asunto(s)
Receptor alfa de Estrógeno , Receptores de Estrógenos , Humanos , Femenino , Ratones , Animales , Células MCF-7 , Especies Reactivas de Oxígeno , Extractos Vegetales/farmacología , Fitoestrógenos , Antiinflamatorios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA