Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Food Sci ; 89(6): 3700-3712, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38709880

RESUMEN

The densified powder material is convenient for storage and transportation, with broad market application prospects. In this study, the discrete element model parameters required for simulating gluten densification were calibrated using the Hertz-Mindlin with JKR contact model. Initially, physical testing techniques were utilized to assess the size distribution, density, and angle of repose (AoR) of gluten particles. Following this, the Plackett-Burman test, the steepest ascent test, and the Box-Behnken test were conducted, and the significant factors were obtained: The coefficient of rolling friction (P-P) was 1.038, the coefficient of static friction (P-P) was 0.071, and the surface energy (P-P) was 0.047. Finally, the AoR and densification simulations were performed under the optimal parameter combination, along with validation tests. The results showed that the relative error between the simulated and tested AoR was 0.52%. The compression ratio and compression force curves of simulated and actual were similar.


Asunto(s)
Glútenes , Glútenes/química , Glútenes/análisis , Calibración , Polvos/química , Manipulación de Alimentos/métodos , Tamaño de la Partícula , Fricción , Modelos Teóricos
2.
J Food Sci ; 89(3): 1616-1631, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38328981

RESUMEN

To quickly calibrate the discrete element parameters (DEP) of pellets with different moisture content (MC), the angle of repose (AoR) was taken as the target value to conduct experimental and simulation research on gluten pellets. The experimental method obtained the intrinsic parameters, contact parameters, and AoR of pellets with different moisture content. The parameters differed significantly under different moisture content (p < 0.05). The AoR-MC model (R2  = 0.987) was established. The Plackett-Burman test, steepest ascent test, and center compound test were carried out to establish the AoR-DEP model (R2  = 0.969) with a relative error less than or equal to 2.07%. The MC-DEP model was derived, and verified by the side plate lifting method with a relative error less than or equal to 2.58%. This paper provides a new method for calibrating DEP under different moisture content.


Asunto(s)
Calibración
3.
Foods ; 12(8)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37107394

RESUMEN

Gluten pellets are readily broken on packaging and transportation. This study aimed to research mechanical properties (elastic modulus, compressive strength, failure energy) with different moisture contents and aspect ratios under different compressive directions. The mechanical properties were examined with a texture analyzer. The results revealed that the material properties of the gluten pellet are anisotropic, and it was more likely to cause crushing during radial compression. The mechanical properties were positively correlated with the moisture content. The aspect ratio had no significant effect (p > 0.05) on the compressive strength. The statistical function model (p < 0.01; R2 ≥ 0.774) for mechanical properties and moisture content fitted well with the test data. The minimum elastic modulus, compressive strength, and failure energy of standards-compliant pellets (with moisture content less than 12.5% d.b.) were 340.65 MPa, 6.25 MPa, and 64.77 mJ, respectively. Moreover, a finite element model with cohesive elements was established using Abaqus software (Version 2020, Dassault Systèmes, Paris, France) to simulate the compression rupture form of gluten pellets. The relative error of the fracture stress in the axial and radial directions between the simulation results and the experimental value was within 4-7%.

4.
Sci Total Environ ; 865: 161352, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36596422

RESUMEN

Cracks and pores are considered as major sources of radon. Cement is widely used as a grouting material in mines, tunnels, and other projects for reinforcement, seepage prevention, and water plugging. This paper mainly experimentally studied the correlation between the radon exhalation rate of the porous medium after grouting and the sand grain diameter, grouting pressure, and slurry water-cement ratio. The pore characteristics of the samples before and after grouting were also studied based on the low field nuclear magnetic resonance (LF-NMR). The findings of the study show that the porosity of samples increases after the superfine cement solidification with an increase in the water-cement ratio, and the radon exhalation rate is proportional to porosity, the radon exhalation rate increases by 0.0005 Bq·m-2/s at W/C = 1.5, and by 0.0017 Bq·m-2/s at W/C = 2 increases, in comparison to the W/C = 1.The radon exhalation rate of porous media gradually increased after grouting in response to an increase in grouting pressure and the water-cement ratio. The radon exhalation rate of the porous media with larger pores was relatively higher and exhibited a positive correlation with the volume of micropores in porous media,the correlations of coarse, medium and fine media are 0.815, 0.826, and 0.859. The change in pore structure has an influence on radon exhalation. Although grouting changes the pore structure and reduces the connectivity between internal pores, the micropores generated after cement slurry solidification improves the radon exhalation rate by providing new channels, When the water-cement ratio is 1.5 and the grouting pressure is 1.5 MPa, the radon exhalation rate of porous media is 0.00273 Bq·m-2/s. The research results serve as a reference basis for the evaluation of the impact of rock masses on grouting reinforcement and pore sealing.

5.
Rev Sci Instrum ; 92(12): 125108, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34972452

RESUMEN

Compressional waves in saturated porous media are relevant to many fields from oil exploration to diagnostic of human cancellous bone and can be used to interpret physical behaviors of materials. In this work, based on Biot's theory in the low frequency range, a key finding is that there exists a critical frequency of Biot's theory in the low frequency range, which determines the coincidence of the properties of Biot waves of the first and second kinds. Furthermore, we have investigated the dispersion and attenuation of the coalescence of the first and second compressional waves in the low frequency range. The coalescence of the first and second waves is strongly attenuated with a moderate phase velocity and shows the in-phase feature. In addition, acoustic wave propagation has been calculated numerically using the space-time conservation element and solution element (CESE) method. The CESE-simulated results are compared to the experimental data and to those of the classical transfer function approach. We show that the CESE scheme preserves the local and global flux conservations in the solution procedure of Biot's theory. It is found that the CESE method provides more accurate predictions of high dispersion and strong attenuation of compressional waves in the low frequency range and is well suitable for predicting compressional wave fields in saturated porous media.


Asunto(s)
Huesos , Sonido , Humanos , Porosidad
6.
Sensors (Basel) ; 20(14)2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32664296

RESUMEN

A rock fracture test is a very important method in the study of rock mechanics. Based on the Mechanics Test System (MTS), the dynamic strain response of the failure process of cylindrical granite specimens under uniaxial compression was observed by using distributed optical fiber strain sensors. Two groups of tests were designed and studied for rock sample fracturing. The main comparison and analysis were made between the distributed optical fiber testing technology and the MTS testing system in terms of the circumferential strain response curve and the evolution characteristics of strain with time. The strain characterization of distributed optical fiber in the process of rock fracturing was obtained. The results show that the ring strains measured by the distributed optical fiber sensor and the circumferential strain gauge were consistent, with a minimum ring strain error of 1.27%. The relationship between the strain jump or gradient band of the distributed optical fiber and the crack space on the sample surface is clear, which can reasonably determine the time of crack initiation and propagation, point out the location of the rock failure area, and provide precursory information about rock fracture. The distributed optical fiber strain sensor can realize the linear and continuous measurement of rock mass deformation, which can provide some reference for the study of macro damage evolution and the fracture instability prediction of field engineering rock mass.

7.
Materials (Basel) ; 10(7)2017 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-28773201

RESUMEN

Granite is a typical crystalline material, often used as a building material, but also a candidate host rock for the repository of high-level radioactive waste. The petrographic texture-including mineral constituents, grain shape, size, and distribution-controls the fracture initiation, propagation, and coalescence within granitic rocks. In this paper, experimental laboratory tests and numerical simulations of a grain-based approach in two-dimensional Particle Flow Code (PFC2D) were conducted on the mechanical strength and failure behavior of Alashan granite, in which the grain-like structure of granitic rock was considered. The microparameters for simulating Alashan granite were calibrated based on real laboratory strength values and strain-stress curves. The unconfined uniaxial compressive test and Brazilian indirect tensile test were performed using a grain-based approach to examine and discuss the influence of mineral grain size and distribution on the strength and patterns of microcracks in granitic rocks. The results show it is possible to reproduce the uniaxial compressive strength (UCS) and uniaxial tensile strength (UTS) of Alashan granite using the grain-based approach in PFC2D, and the average mineral size has a positive relationship with the UCS and UTS. During the modeling, most of the generated microcracks were tensile cracks. Moreover, the ratio of the different types of generated microcracks is related to the average grain size. When the average grain size in numerical models is increased, the ratio of the number of intragrain tensile cracks to the number of intergrain tensile cracks increases, and the UCS of rock samples also increases with this ratio. However, the variation in grain size distribution does not have a significant influence on the likelihood of generated microcracks.

8.
Environ Sci Pollut Res Int ; 24(4): 3727-3738, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27888483

RESUMEN

Carbon dioxide (CO2) blowout from a wellbore is regarded as a potential environment risk of a CO2 capture and storage (CCS) project. In this paper, an assumed blowout of a wellbore was examined for China's Shenhua CCS demonstration project. The significant factors that influenced the diffusion of CO2 were identified by using a response surface method with the Box-Behnken experiment design. The numerical simulations showed that the mass emission rate of CO2 from the source and the ambient wind speed have significant influence on the area of interest (the area of high CO2 concentration above 30,000 ppm). There is a strong positive correlation between the mass emission rate and the area of interest, but there is a strong negative correlation between the ambient wind speed and the area of interest. Several other variables have very little influence on the area of interest, e.g., the temperature of CO2, ambient temperature, relative humidity, and stability class values. Due to the weather conditions at the Shenhua CCS demonstration site at the time of the modeled CO2 blowout, the largest diffusion distance of CO2 in the downwind direction did not exceed 200 m along the centerline. When the ambient wind speed is in the range of 0.1-2.0 m/s and the mass emission rate is in the range of 60-120 kg/s, the range of the diffusion of CO2 is at the most dangerous level (i.e., almost all Grade Four marks in the risk matrix). Therefore, if the injection of CO2 takes place in a region that has relatively low perennial wind speed, special attention should be paid to the formulation of pre-planned, emergency measures in case there is a leakage accident. The proposed risk matrix that classifies and grades blowout risks can be used as a reference for the development of appropriate regulations. This work may offer some indicators in developing risk profiles and emergency responses for CO2 blowouts.


Asunto(s)
Contaminantes Atmosféricos/análisis , Dióxido de Carbono/análisis , Difusión , China , Monitoreo del Ambiente/métodos , Viento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...