Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Soft Matter ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39364663

RESUMEN

Developing tough and conductive materials is crucial for the fields of wearable devices. However, soft materials like polyurethane (PU) are usually non-conductive, whereas conductive materials like carbon nanotubes (CNTs) are usually brittle. Besides, their composites usually face poor interfacial interactions, leading to a decline in performance in practical use. Here, we develop a stretchable PU/CNTs composite foam for use as a strain sensor. A cationic chain extender is incorporated to afford PU cationic groups and to regulate its mechanical properties, whose tensile strength is up to 12.30 MPa and breaking strain exceeds 1000%, and which shows considerable adhesion capability. Furthermore, porous PU foam is prepared via a salt-templating method and carboxylic CNTs with negative groups are loaded to afford the foam conductivity. The obtained foam shows high sensitivity to small strain (GF = 5.2) and exhibits outstanding long-term cycling performance, which is then used for diverse motion detection. The strategy illustrated here should provide new insights into the design of highly efficient PU-based sensors.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39318341

RESUMEN

Ionogels are emerging as promising electronics due to their exceptional ionic conductivity, stretchability, and high thermal stability. However, developing ionogels with enhanced mechanical properties without compromising conductivity and ion transport rates remains a significant challenge. Here, we report a zwitterionic cross-linker, 4-(2-(((2-(methacryloyloxy)ethyl)carbamoyl)oxy)ethyl)-4,14-dimethyl-8,13-dioxo-7,12-dioxa-4,9-diazapentadec-14-en-4-ium-1-propanesulfonate (MEPS) and utilized it to cross-link a variety of functional monomers, leading to the synthesis of conductive ionogels that exhibit both high mechanical strength and versatile applicability. Due to its abundant hydrogen bond donors/acceptors and zwitterionic moiety, MEPS exhibits several hundred times higher solubility in ionic liquids compared to conventional cross-linkers. As a proof-of-concept, the poly(acrylic acid-MEPS) ionogels demonstrate enhanced elongation, fracture toughness, and superior thermal stability, all while maintaining high conductivity due to the high affinity between ionic liquids and zwitterionic networks. Furthermore, MEPS-cross-linked poly(α-thioctic acid) electronics can be engineered as strain sensors, showing exceptional antifatigue properties and recyclability, remaining stable and functional over 300 consecutive cycles. This universal cross-linking strategy not only improves the overall performance of ionogels but also contributes to the development of next-generation soft electronics with enhanced functionality and durability.

3.
Adv Sci (Weinh) ; : e2406287, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39258577

RESUMEN

Coordinating the immune response and bioenergy metabolism in bone defect environments is essential for promoting bone regeneration. Mitochondria are important organelles that control internal balance and metabolism. Repairing dysfunctional mitochondria has been proposed as a therapeutic approach for disease intervention. Here, an engineered hierarchical hydrogel with immune responsiveness can adapt to the bone regeneration environment and mediate the targeted mitochondria transfer between cells. The continuous supply of mitochondria by macrophages can restore the mitochondrial bioenergy of bone marrow mesenchymal stem cells (BMSC). Fundamentally solving the problem of insufficient energy support of BMSCs caused by local inflammation during bone repair and regeneration. This discovery provides a new therapeutic strategy for promoting bone regeneration and repair, which has research value and practical application prospects in the treatment of various diseases caused by mitochondrial dysfunction.

4.
J Hazard Mater ; 480: 135856, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39298956

RESUMEN

Volatile organic compounds (VOCs) have proven to be hazardous to the human respiratory system. However, the underlying biological mechanisms remain poorly understood. Therefore, targeted determination of eleven VOC metabolites (mVOCs) along with the nontargeted metabolomic analysis was performed on urine samples collected from lung cancer patients and healthy individuals. Nine mVOCs mainly derived from aldehydes, alkenes, amides, and aromatics were detected in > 90 % of the urine samples, suggesting that the participants were ubiquitously exposed to these typical VOCs. A molecular gatekeeper discovery workflow was employed to link the exposure biomarkers with correlated clusters of endogenous metabolites. As a result, multiple metabolic pathways, including amino acid metabolism, steroid hormone biosynthesis and metabolism, and fatty acid ß-oxidation were connected with VOC exposure. Furthermore, 16 of 73 molecular gatekeepers were associated with lung cancer and pointed to a few disrupted metabolic pathways related to hydroxysteroids and acylcarnitine. The shift in molecular profiles was validated in rat model post VOC administration. Thereinto, the up-regulation of enzymes involved in acylcarnitine synthesis and transport in rat lung tissues highlighted that the mitochondrial dysfunction may be a potential carcinogenic mechanism. Our findings provide new insights into the mechanisms underlying lung cancer induced by VOC exposure.

5.
Adv Sci (Weinh) ; : e2407501, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248332

RESUMEN

Marine oil exploration is important yet greatly increases the risk of oil leakage, which will result in severe environment pollution and economic losses. It is an urgent need to develop effective underoil adhesives. However, realizing underoil adhesion is even harder than those underwater, due to the stubborn attachment of a highly viscous oil layer on target surface. Here, inspired by endocytosis, a tough gel tape composed of zwitterionic polymer network and zwitterionic surfactants is developed. The amphiphilic surfactants can form micelle to capture the oil droplets and transport them from the interface to gel via electrostatic attraction of polymer backbone, mimicking the endocytosis and achieving robust underoil adhesion. Benefiting from the oil-resistance of polymer backbone, the gel further realizes a combination of i) long-term adhesion with high durability, ii) repeated adhesion in oil, and iii) renewable adhesion efficiency after exhausted use. The tape exhibits an ultra-high adhesive toughness of 2446.86 J m-2 to stainless steel in silicone oil after 30 days' oil-exposure; such value of adhesive toughness surpasses many of those achieved in underwater adhesion and is greater than underoil adhesion performance of commercial tape. The strategy illustrated here will motivate the design of sustainable and efficient adhesives for wet environments.

6.
ACS Appl Mater Interfaces ; 16(37): 49813-49822, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39229668

RESUMEN

Wearable electronics for long-term monitoring of physiological signals should be capable of removing sweat generated during daily motion, which significantly impacts signal stability, human comfort, and safety of the electronics. In this study, we developed a double-layer polyurethane (PU) membrane with sweat-directional transport ability that can be applied for monitoring strain signals. The PU membrane was composed of a hydrophilic, conductive layer and a relatively hydrophobic layer. The double-layer PU composite membrane exhibited varied pore size and opposite hydrophilicity on its two sides, enabling the spontaneous pumping of sweat from the hydrophobic side to the hydrophilic side, i.e., the directional transport of sweat. The membrane can be used as a strain sensor to monitor motion strain over a broad working range of 0% to 250% with high sensitivity (GF = 4.11). The sensor can also detect simple human movements even under sweating conditions. We believe that the strategy demonstrated here will provide new insights into the design of next-generation strain sensors.


Asunto(s)
Poliuretanos , Sudor , Dispositivos Electrónicos Vestibles , Poliuretanos/química , Humanos , Sudor/química , Sudor/metabolismo , Membranas Artificiales , Interacciones Hidrofóbicas e Hidrofílicas , Sudoración/fisiología
7.
Drug Resist Updat ; 77: 101142, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39214042

RESUMEN

The spread of antibiotic resistance genes (ARGs), particularly those carried on plasmids, poses a major risk to global health. However, the extent and frequency of ARGs transfer in microbial communities among human, animal, and environmental sectors is not well understood due to a lack of effective tracking tools. We have developed a novel fluorescent tracing tool, CRISPR-AMRtracker, to study ARG transfer. It combines CRISPR/Cas9 fluorescence tagging, fluorescence-activated cell sorting, 16S rRNA gene sequencing, and microbial community analysis. CRISPR-AMRtracker integrates a fluorescent tag immediately downstream of ARGs, enabling the tracking of ARG transfer without compromising the host cell's antibiotic susceptibility, fitness, conjugation, and transposition. Notably, our experiments demonstrate that sfGFP-tagged plasmid-borne mcr-1 can transfer across diverse bacterial species within fecal samples. This innovative approach holds the potential to illuminate the dynamics of ARG dissemination and provide valuable insights to shape effective strategies in mitigating the escalating threat of antibiotic resistance.

8.
Ultrason Sonochem ; 110: 107043, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39186918

RESUMEN

This study explored the potential of ultrasonic-assisted three-phase partitioning (UTPP) to simultaneously extract lipids, proteins, and polysaccharides from Idesia polycarpa Maxim (IPM) cake meal, a significant byproduct of oil extraction. The impact of variables such as inorganic salt type, solid-liquid ratio, salt concentration, pH, ultrasonic time, temperature, and volume of dimethyl carbonate was examined. Based on the single-factor tests and response surface methodology (RSM), optimal conditions were identified as 30 % ammonium citrate, a 1:26 solid-liquid ratio, pH 3, 31 min of ultrasonic time, 30 °C temperature, and 15 mL of dimethyl carbonate. These conditions achieved extraction rates of 8.10 % for lipids, 5.03 % for proteins, and 10.03 % for polysaccharides, with recovery rates of 91.62 %, 83.08 %, and 93.95 % respectively. Chemical analysis showed the lipid fraction rich in linoleic acid, and the protein fraction high in glutamic acid, aspartate, and serine. The polysaccharide fraction, mainly RG-I pectin with a molecular weight of 226.58 kDa, exhibited strong thermal stability and inhibitory effects on α-glucosidase and glycation, suggesting potential for functional food and dietary supplement applications. This highlights UTPP as a sustainable method for effectively utilizing valuable compounds from IPM cake meal, outperforming traditional extraction techniques.


Asunto(s)
Fraccionamiento Químico , Polisacáridos , Ondas Ultrasónicas , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Fraccionamiento Químico/métodos , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Temperatura , Aceites de Plantas/química , Concentración de Iones de Hidrógeno , alfa-Glucosidasas/metabolismo
9.
BMC Health Serv Res ; 24(1): 1004, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39210361

RESUMEN

BACKGROUND: The incongruity between the regional supply and demand of healthcare services is a persistent challenge both globally and in China. Patient mobility plays a pivotal role in addressing this issue. This study aims to delineate the cross-provincial inpatient mobility network (CIMN) in China and identify the underlying factors influencing this CIMN. METHODS: We established China's CIMN by applying a spatial transfer matrix, utilizing the flow information from 5,994,624 cross-provincial inpatients in 2019, and identified the primary demand and supply provinces for healthcare services. Subsequently, we employed GeoDetector to analyze the impact of 10 influencing factors-including medical resources, medical quality, and medical expenses-on the spatial patterns of CIMN. FINDINGS: Beijing, Shanghai, Zhejiang, and Jiangsu provinces are the preferred medical destinations for cross-provincial inpatients, while Anhui, Henan, Hebei, and Jiangsu provinces are the main sources for cross-provincial inpatients. Patient flow between provinces decreases with distance. The spatial distribution of medical resources, medical quality, and medical expenses account for 87%, 73%, and 56% of the formation of CIMN, respectively. Additionally, interactions between these factors enhance explanatory power, suggesting that considering their interactions can more effectively optimize medical resources and services. CONCLUSIONS: The analysis of CIMN reveals the supply and demand patterns of healthcare services, providing insights into the inequality characteristics of healthcare access. Furthermore, understanding the driving factors and their interactions offers essential evidence for optimizing healthcare services.


Asunto(s)
Pacientes Internos , Humanos , China , Pacientes Internos/estadística & datos numéricos , Masculino , Femenino , Transferencia de Pacientes/estadística & datos numéricos , Accesibilidad a los Servicios de Salud/estadística & datos numéricos , Persona de Mediana Edad , Adulto , Necesidades y Demandas de Servicios de Salud
10.
SAGE Open Med Case Rep ; 12: 2050313X241271818, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39161923

RESUMEN

Malignant peritoneal mesothelioma is an exceedingly rare malignant tumor. Herein, we present a case of malignant peritoneal mesothelioma in a 59-year-old Chinese female patient who was stable after treatment for multiple relapses. Imaging revealed massive ascites and an irregular thickening of the peritoneal mesangium. Laparoscopic biopsy revealed heterogeneous cell nests in the parietal peritoneal fibrous tissue, which were confirmed by immunohistochemical staining for Calretinin, WT-1, and D2-40. In terms of genetic screening, BAP1, CSF1R, and other key driver gene variants closely related to malignant peritoneal mesothelioma have been explored in tumor tissues. Notably, CARD11 driver mutation was first found in all malignant peritoneal mesothelioma patients, and ATM A1159T gene mutation found in recurrent focal tissue may be associated with recurrent tumor recurrence.

11.
Viruses ; 16(7)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39066217

RESUMEN

Tick-borne Encephalitis (TBE) is a zoonotic disease caused by the Tick-borne Encephalitis virus (TBEV), which affects the central nervous system of both humans and animals. Currently, there is no specific therapy for patients with TBE, with symptomatic treatment being the primary approach. In this study, the effects of minocycline (MIN), which is a kind of tetracycline antibiotic, on TBEV propagation and cellular protection in TBEV-infected cell lines were evaluated. Indirect immunofluorescence, virus titers, and RT-qPCR results showed that 48 h post-treatment with MIN, TBEV replication was significantly inhibited in a dose-dependent manner. In addition, the inhibitory effect of MIN on different TBEV multiplicities of infection (MOIs) in Vero cells was studied. Furthermore, the transcriptomic analysis and RT-qPCR results indicate that after incubation with MIN, the levels of TBEV and CALML4 were decreased, whereas the levels of calcium channel receptors, such as RYR2 and SNAP25, were significantly increased. MIN also regulated MAPK-ERK-related factors, including FGF2, PDGFRA, PLCB2, and p-ERK, and inhibited inflammatory responses. These data indicate that administering MIN to TBEV-infected cells can reduce the TBEV level, regulate calcium signaling pathway-associated proteins, and inhibit the MAPK-ERK signaling pathway and inflammatory responses. This research offers innovative strategies for the advancement of anti-TBEV therapy.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Minociclina , Replicación Viral , Animales , Virus de la Encefalitis Transmitidos por Garrapatas/efectos de los fármacos , Virus de la Encefalitis Transmitidos por Garrapatas/fisiología , Minociclina/farmacología , Chlorocebus aethiops , Células Vero , Replicación Viral/efectos de los fármacos , Humanos , Antivirales/farmacología , Encefalitis Transmitida por Garrapatas/virología , Encefalitis Transmitida por Garrapatas/tratamiento farmacológico , Línea Celular , Transducción de Señal/efectos de los fármacos
12.
Biomed Pharmacother ; 178: 117185, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39053429

RESUMEN

Chemotherapy is the main treatment for bladder cancer, but drug resistance and side effects limit its application and therapeutic effect. Herein, we constructed doxorubicin (DOX)/COOH-mesoporous silica nanoparticle/polyethylenimine (PEI)/nucleic acid chimeras (DOX/MSN/Chimeras) to reduce the toxicity of chemotherapy drugs and the resistance of bladder cancer cells. Transmission electron microscopy showed that PEI was coated on the DOX/MSN/BSA nanoparticles with a diameter of about 150 nm. DOX/MSN/PEI could control DOX release for over 48 h, and the sudden release rate was significantly lower than DOX/MSN. Immunohistochemical results showed that DOX/MSN/Chimera specifically bound to bladder cancer cells, and markedly inhibited PI3K expression and proliferation of DOX-resistant bladder cancer cells. DOX/MSN/Chimera promoted the apoptosis of drug-resistant bladder cancer cells, which was superior to DOX/MSN/Aptamer or DOX/MSN. We further carried out animal experiments and found that DOX/MSN/Chimera could reduce the volume of transplanted tumors in vivo. Compared with DOX/MSN/Aptamer group, the proliferation rate was significantly decreased and the proportion of apoptotic cells was highly increased. Through the histological observation of kidneys and lungs, we believed that DOX/MSN/Chimera can effectively reduce the damage of chemotherapy drugs to normal tissues. In conclusion, we constructed a COOH-MSN/nucleic acid chimera conjugate for the targeted delivery of siRNA and anti-cancer drugs. Our study provides a new method for personalized and targeted treatment of drug-resistant bladder cancer.


Asunto(s)
Doxorrubicina , Resistencia a Antineoplásicos , Ratones Desnudos , Nanopartículas , ARN Interferente Pequeño , Dióxido de Silicio , Neoplasias de la Vejiga Urinaria , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/genética , Doxorrubicina/farmacología , Doxorrubicina/administración & dosificación , Dióxido de Silicio/química , Animales , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Nanopartículas/química , Línea Celular Tumoral , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/farmacología , Porosidad , Ratones , Apoptosis/efectos de los fármacos , Ratones Endogámicos BALB C , Ácidos Nucleicos/administración & dosificación , Polietileneimina/química , Ensayos Antitumor por Modelo de Xenoinjerto , Portadores de Fármacos/química , Proliferación Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Antibióticos Antineoplásicos/farmacología , Antibióticos Antineoplásicos/administración & dosificación
13.
Nanomicro Lett ; 16(1): 233, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954272

RESUMEN

The rapid development of organic electrochemical transistors (OECTs) has ushered in a new era in organic electronics, distinguishing itself through its application in a variety of domains, from high-speed logic circuits to sensitive biosensors, and neuromorphic devices like artificial synapses and organic electrochemical random-access memories. Despite recent strides in enhancing OECT performance, driven by the demand for superior transient response capabilities, a comprehensive understanding of the complex interplay between charge and ion transport, alongside electron-ion interactions, as well as the optimization strategies, remains elusive. This review aims to bridge this gap by providing a systematic overview on the fundamental working principles of OECT transient responses, emphasizing advancements in device physics and optimization approaches. We review the critical aspect of transient ion dynamics in both volatile and non-volatile applications, as well as the impact of materials, morphology, device structure strategies on optimizing transient responses. This paper not only offers a detailed overview of the current state of the art, but also identifies promising avenues for future research, aiming to drive future performance advancements in diversified applications.

14.
Huan Jing Ke Xue ; 45(6): 3746-3755, 2024 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-38897794

RESUMEN

Xi'an is the political, economic, and cultural center of northwest China with a developed industry. Air pollution incidents have brought great challenges to the high-quality development of the social economy. It is vital to study air pollution characteristics and clarify their impact on human health. In this study, we first analyzed the spatiotemporal variations in air pollutants in the study region from 2015 to 2021. Then, the air quality index (AQI), aggregate air quality index (AAQI), and health risk-based air quality index (HAQI) were used to assess health risks. Based on these, the AirQ2.2.3 model was used to quantify health effects. The results showed that the major pollutants were PM10, PM2.5, and O3. The main pollution characteristics of the study area were terrain characteristics and the mixed pollution of anthropogenic emissions. Compared to that of AQI, AAQI and HAQI showed better classification performance for pollution levels. HAQI revealed that approximately 80 % of the population was exposed to unhealthy air throughout the year in the study region. People were most exposed to unhealthy air in winter, followed by autumn and spring, and the least in summer. The AirQ2.2.3 model quantified the total mortality proportions attributable to PM2.5, PM10, SO2, CO, NO2, and O3, which were 0.99 %, 2.04 %, 0.41 %, 1.72 %, 8.76 %, and 3.67 %, respectively. The attributable proportion of mortality of the respiratory system and cardiovascular diseases was consistent with the change rule of total mortality.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Monitoreo del Ambiente , Material Particulado , Análisis Espacio-Temporal , China , Contaminantes Atmosféricos/análisis , Humanos , Contaminación del Aire/análisis , Material Particulado/análisis , Exposición a Riesgos Ambientales , Ciudades , Ozono/análisis , Estaciones del Año , Medición de Riesgo
15.
ACS Appl Mater Interfaces ; 16(26): 34125-34134, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38888298

RESUMEN

Bilayer hydrogels, endowed with multiresponsive and switchable color-changing properties, have garnered significant attention for bioinspired artificial intelligent materials. However, the design and fabrication of such hydrogels that can fully mimic the adaptation of the live organism, i.e., simultaneous changes in shape, fluorescent, and/or visible color, still remain significant challenges. Herein, a multiresponsive (e.g., temperature, salt, and pH) and multiadaptive (shape, fluorescent color, and visible color changes) hydrogel was fabricated by employing monomers featuring pH-responsive fluorescence 4-(2-(4-(dimethylamino) phenyl)-1-isocyanovinyl) phenol (DP) and switchable color-changing 4-(2-sulfethyl) -1-(4-vinylbenzyl) pyridinium betaine (VPES). The bilayer hydrogel comprises a temperature- and pH-responsive gel layer, poly(N-isopropylacrylamide-co-2-(dimethylamino) ethyl methacrylate), along with a pH-, temperature-, and salt-responsive gel layer, poly(acrylamide-co-2-(dimethylamino)ethyl methacrylate-co-VPES)@DP. Due to the opposite swelling/shrinking behavior between the two layers, the prepared hydrogel exhibits shape changes in response to thermal, salt, and pH stimuli, along with switchable fluorescent color and visible color change that originate from DP and polyVPES, respectively. Apart from multiresponsive behavior, this hydrogel also shows an excellent antifatigue property and high sensitivity, which makes it hold significant potential in many applications. We anticipate that this strategy to realize multiresponsive capability in this work can also inspire the design of the biomimetic smart materials.

16.
Small ; 20(38): e2402529, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38767079

RESUMEN

Unlocking CO2 capture potential remains a complex and challenging endeavor. Here, a blueprint is crafted for optimizing materials through CO2 capture and developing a synergistic hybridization strategy that involves synthesizing CO2-responsive hydrogels by integrating polymeric networks interpenetrated with polyethyleneimine (PEI) chains and inorganic CaCl2. Diverging from conventional CO2 absorbents, which typically serve a singular function in CO2 capture, these hybrid PEAC hydrogels additionally harness its presence to tune their optical and mechanical properties once interacting with CO2. Such synergistic functions entail two significant steps: (i) rapid CO2-fixing through PEI chains to generate abundant carbamic acid and carbamate species and (ii) mineralization via CaCl2 to induce the formation of CaCO3 micro-crystals within the hydrogel matrix. Due to the reversible bonding, the PEAC hydrogels enable the decoupling of CO2 through an acid fumigation treatment or a heating process, achieving dynamic CO2 capture-release cycles up to 8 times. Furthermore, the polyethyleneimine-acrylamide-calcium chloride (PEAC) hydrogel exhibits varying antibacterial attributes and high interfacial adhesive strength, which can be modulated by fine-tuning the compositions of PEI and CaCl2. This versatility underscores the promising potential of PEAC hydrogels, which not only unlocks CO2 capture capabilities but also offers opportunities in diverse biological and biomedical applications.

17.
Front Oncol ; 14: 1381894, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38764576

RESUMEN

Arachidonic acid (AA) is a crucial polyunsaturated fatty acid in the human body, metabolized through the pathways of COX, LOX, and cytochrome P450 oxidase to generate various metabolites. Recent studies have indicated that AA and its metabolites play significant regulatory roles in the onset and progression of ovarian cancer. This article examines the recent research advancements on the correlation between AA metabolites and ovarian cancer, both domestically and internationally, suggesting their potential use as biological markers for early diagnosis, targeted therapy, and prognosis monitoring.

18.
J Am Chem Soc ; 146(10): 7052-7062, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38427585

RESUMEN

Functional DNAs are valuable molecular tools in chemical biology and analytical chemistry but suffer from low activities due to their limited chemical functionalities. Here, we present a chemoenzymatic method for site-specific installation of diverse functional groups on DNA, and showcase the application of this method to enhance the catalytic activity of a DNA catalyst. Through chemoenzymatic introduction of distinct chemical groups, such as hydroxyl, carboxyl, and benzyl, at specific positions, we achieve significant enhancements in the catalytic activity of the RNA-cleaving deoxyribozyme 10-23. A single carboxyl modification results in a 100-fold increase, while dual modifications (carboxyl and benzyl) yield an approximately 700-fold increase in activity when an RNA cleavage reaction is catalyzed on a DNA-RNA chimeric substrate. The resulting dually modified DNA catalyst, CaBn, exhibits a kobs of 3.76 min-1 in the presence of 1 mM Mg2+ and can be employed for fluorescent imaging of intracellular magnesium ions. Molecular dynamics simulations reveal the superior capability of CaBn to recruit magnesium ions to metal-ion-binding site 2 and adopt a catalytically competent conformation. Our work provides a broadly accessible strategy for DNA functionalization with diverse chemical modifications, and CaBn offers a highly active DNA catalyst with immense potential in chemistry and biotechnology.


Asunto(s)
ADN Catalítico , ARN Catalítico , Secuencia de Bases , Magnesio , ADN Catalítico/química , ADN , ARN/química , Iones , Conformación de Ácido Nucleico , Catálisis , ARN Catalítico/metabolismo
19.
Biomed Pharmacother ; 174: 116506, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554525

RESUMEN

Combination therapy has become the most important treatment for advanced non-small cell lung cancer (NSCLC), which can significantly improve the prognosis of patients. However, poor targeting and adverse reactions limited its clinical application. Here, we constructed an AS1411 aptamer-programmed cell death ligand-1 (PD-L1) siRNA chimera/polyethylenimine/glutamine/ß-cyclodextrin/doxorubicin (Chimera/ PEI/Gln/ß-CD/DOX) nanoparticle for the combination therapy (chemotherapy combined with immunotherapy). Scanning electron microscopy showed that PEI/Gln/ß-CD/DOX nanoparticle was conical, with a diameter of about 250-500 nm. AS1411 aptamer-PD-L1 siRNA chimera can effectively bind NSCLC cells and inhibit PD-L1 expression, further activating T cells and CD8+T cells. Glutamine modification effectively promoted the doxorubicin uptake by cancer cells and induced their apoptosis. Animal experiments showed that our nanoparticles effectively treated the transplanted tumor, and the adverse reactions were reduced. Compared with the Aptamer/ß-CD/DOX group, the volume and ki-67 index of transplanted tumors in the Chimera/ß-CD/DOX group were significantly decreased, while the apoptosis ratio was increased. Immunohistochemical results showed that Compared with the Aptamer/ß-CD/DOX group, the number of T cells and CD8+T cells in the Chimera/ß-CD/DOX group was increased by 1.34 and 1.41 times. Glutamine modification enhanced the chemotherapeutic efficacy and anti-tumor immune response in vivo. Our study provided a new method for the combination therapy of lung squamous cell carcinoma.


Asunto(s)
Aptámeros de Nucleótidos , Doxorrubicina , Glutamina , Neoplasias Pulmonares , Nanopartículas , ARN Interferente Pequeño , beta-Ciclodextrinas , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Aptámeros de Nucleótidos/farmacología , Animales , Humanos , beta-Ciclodextrinas/química , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/farmacología , Nanopartículas/química , Doxorrubicina/farmacología , Doxorrubicina/administración & dosificación , Línea Celular Tumoral , Ratones Desnudos , Ratones Endogámicos BALB C , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/terapia , Ratones , Terapia Combinada , Apoptosis/efectos de los fármacos , Antígeno B7-H1/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/genética
20.
Int J Food Microbiol ; 412: 110572, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38237416

RESUMEN

The monophasic variant of Salmonella enterica serovar Typhimurium with the antigenic formula 1,4,[5],12:i:- is one of the most common pathogenic bacteria causing global food-borne outbreaks. However, the research on molecular characteristics and evolution of monophasic S. typhimurium in China is still lacking. In the current study, 59 monophasic S. typhimurium strains were isolated from food animals and food products in South China between 2011 and 2018. A total of 87.5 % of monophasic S. typhimurium isolates were grouped into one independent clade with other monophasic S. typhimurium strains in China distinct from other countries by phylogenomic analysis. These isolates possess variable genotypes, including multiple ARGs on plasmid IncHI2, diverse evolutions at the fljAB locus, and virulence factors. Our results suggest that the monophasic S. typhimurium isolates currently circulating in China might be an independent epidemic subtype.


Asunto(s)
Infecciones por Salmonella , Animales , Infecciones por Salmonella/microbiología , Salmonella typhimurium/genética , Serogrupo , Plásmidos , Genotipo , Antibacterianos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA