Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 13(42): 49964-49973, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34652892

RESUMEN

Demulsifying ionic surfactant-stabilized emulsions remains an emerging issue due to the stringent electrostatic barriers. In this work, a phosphate-mediated anion exchange strategy was proposed to fabricate a metal-organic framework, MIL-100(Fe), with adjustable surface charge for effective demulsification toward a cationic surfactant-stabilized emulsion. By adjusting the pH of the phosphate precursor solution, the surface charge of MIL-100(Fe) can be fine-tuned. At pH 3.0, the phosphate-exchanged MIL-100(Fe) with the zeta potential decreasing from 21.4 to 6.1 mV exhibited a significant enhancement of the demulsification efficiency (DE) from 35 to 91%. Further elevating the pH to 9.0 results in the zeta potential of the phosphate-exchanged MIL-100(Fe) to be reversed to -2.0 mV, and the DE can be optimized to 96% within 5 min. The demulsification mechanism was systematically explored based on the zeta potential, distribution of the surfactant, viscoelastic modulus evaluation, and morphological characterization of the emulsion in combination with monitoring of the dynamics process of demulsification. It was found that the phosphate-exchanged MIL-100(Fe) captured by the emulsion can lead to the release of the surfactant and heterogenization of the interfacial film, causing the elasticity of the emulsion to decrease and the irreversible deformation of emulsion droplets. Consequently, the destabilized emulsion could be subjected to the effective demulsification either by the fusion pathway mediated by the phosphate-exchanged MIL-100(Fe) or direct rupture. This work emphasized a facile and promising approach to deal with the cationic surfactant-emulsified oily wastewater and disclosed the fundamental demulsification process.

2.
J Opt Soc Am A Opt Image Sci Vis ; 30(11): 2286-90, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24322927

RESUMEN

Retroreflective free-space optical communication is important because of advantages such as small volume, low weight, and low power consumption. Link failure caused by bad weather conditions will occur because of the attenuated retroreflective signal and the increased scattering of the transmitted light. The scattering effect can be reduced because the physical properties (including polarization, wavefront, and phase) of the scattering signal are different from those of the retroreflective signal. The physical properties of the scattering signal are obtained using a polarization-sensitive Monte Carlo model, and the heterodyning scattering signal is obtained using heterodyning theory. Results show that, with optical heterodyning, the scattering effect is efficiently reduced, and advantages such as better adaptability to bad weather conditions, longer communication range, more compact transceiver design, larger covering area of the optical receiver, and easier target acquisition for the retromodulator than before can also be obtained.

3.
Appl Opt ; 51(35): 8366-72, 2012 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-23262531

RESUMEN

This paper investigates characteristics of polarization in non-line-of-sight (NLOS) ultraviolet (UV) communication channels based on a vectorized polarization-sensitive model of NLOS multiple-scatter propagation. The degree of polarization has been analyzed from the following factors: elevation angles, beam angle, field-of-view, off-axis angles, and baseline distance, etc. We draw conclusions that will guide the design of polarization multiplexing technology in NLOS UV communication systems. Outdoor experimentation has validated that this technology is useful to improve the data rate.

4.
Appl Opt ; 51(16): 3590-8, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22695598

RESUMEN

In most spacecraft, there is a need to know the craft's angular rate. Approaches with least squares and an adaptive Kalman filter are proposed for estimating the angular rate directly from the star tracker measurements. In these approaches, only knowledge of the vector measurements and sampling interval is required. The designed adaptive Kalman filter can filter out noise without information of the dynamic model and inertia dyadic. To verify the proposed estimation approaches, simulations based on the orbit data of the challenging minisatellite payload (CHAMP) satellite and experimental tests with night-sky observation are performed. Both the simulations and experimental testing results have demonstrated that the proposed approach performs well in terms of accuracy, robustness, and performance.

5.
J Opt Soc Am A Opt Image Sci Vis ; 29(12): 2608-11, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23455910

RESUMEN

Retroreflective free-space optical (RFSO) communication is a new concept of optical communication; it consists of an optical transceiver and a retromodulator and has advantages such as light weight, small volume, and low power consumption. The power captured by the receiver consists of two parts: retroreflective and scattering. The retroreflective characteristics are obtained using an analytical formula, the scattering characteristics using a Monte Carlo model. Results show that the scattering power plays an important role in a RFSO communication link, especially when the communication range is long or the meteorological range is short. Some rules are also obtained for the sake of system design, which include increasing the range from the transmitter and the receiver properly, increasing the area of the retromodulator, limiting the field of view of the receiver, and limiting the beam divergence of the transmitter.

6.
Opt Express ; 19(22): 21216-26, 2011 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-22108974

RESUMEN

This paper studies the effects of the obstacle on non-line-of-sight ultraviolet communication links using multiple-scatter model based on a Monte Carlo method. On the condition that transmitter beam and receiver FOV just pass the top of the obstacle, and ranges is fixed, the received energy density is at its maximum. The path loss increases when the transmitter or the receiver is much near to the obstacle, because the nearby common scattering volumes decrease intensively. The optimal received range decreases with the increasing of the distance between transmitter and obstacle. The predictions are validated with experimental measurements. This work can be used for the guidance of UV system design and network technology to apply in complex surroundings, such as mountain, buildings, etc.

7.
J Opt Soc Am A Opt Image Sci Vis ; 28(10): 2082-5, 2011 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-21979512

RESUMEN

The existing Monte-Carlo-based non-line-of-sight (NLOS) multiple-scatter propagation model is extended to include polarization and also vectorized to improve the simulation speed by about 500 times. This model is validated by the noncoplanar single-scatter model; the results show a perfect match. Numerical examples for various polarization setups are obtained, and results show that the single-scatter and multiple-scatter signals are all polarization dependent. Therefore, NLOS polarized UV communication with a high data rate is achievable--the polarizing information is coded by a time-dependent polarizer, influenced by the atmospheric channel, and decoded according to the distribution characteristics of the scattered signals after the time-independent analyzers.

8.
J Opt Soc Am A Opt Image Sci Vis ; 27(7): 1505-9, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20596134

RESUMEN

An analytical model of non-line-of-sight (NLOS) single-scatter propagation is presented that has no integral form and is intended for performance analysis and system design of NLOS UV communication. Based on isotropic scattering and a continuous wave transmitter, the analytical model is verified by the current NLOS single-scatter propagation model, with consistent results. Several rules concerning NLOS UV communication are put forward on the basis of this analytical model, which are shown as follows: on condition that the minimum single-scatter optical depth is less than 0.1, the path loss factor should be 1; to maintain the NLOS UV communication link, the transmitter needs to radiate neither a continuous wave nor a huge pulse but a low-power wave whose duration is approximately the duration of impulse response; the "best" extinction coefficient is approximately the inverse ratio of the efficient single-scatter range; on condition that the radiation intensity of the transmitter is fixed, the half field of views (FOVs) are positive factors, while the elevation angles are negative factors; on condition that the power of the transmitter is fixed, the conclusions mentioned above remain valid with the exception that the half FOV of the transmitter is a negative factor. These rules also apply to anisotropic scattering.

9.
J Opt Soc Am A Opt Image Sci Vis ; 26(11): 2466-9, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19884949

RESUMEN

A propagation model that describes the characteristics of multiscatter radiation in atmosphere is presented. The model is based on the Monte Carlo method; each scattering process is set as an event of probability. LOWTRAN7 is used to calculate the atmospheric coefficients, and Mie theory is used to calculate the scattering characteristics of the particles. It is shown that the multiscatter model matches the single-scatter model perfectly when the scattering count is 1, and the formula for the single-scatter approximation is modified for the non-line-of-sight (NLOS) problem. It is also shown that the duration of the impulse response is about 8 micros, the proportion of single-scatter irradiance is very small, and the average scattering count is 3.85 instead of 1 when the range is close to 1 km (weather conditions, field of view, and elevation angle are given). All these characteristics are presented for what is, to our knowledge, the first time. This model is wavelength-independent; 0.254 microm is chosen as the wavelength of simulation.

10.
Appl Opt ; 46(18): 3774-9, 2007 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-17538674

RESUMEN

Unexpected irreversible damage occurred repeatedly in the asymmetric bismuth silicate (BSO) photorefractive spatial light modulator under some operation modes, even though the power of the write-light beam does not exceed the optical damage threshold. According to the microscopic surface images and the Raman spectra of the BSO film, sudden rising of temperature in local areas caused by the drift of the photon-induced electrons is responsible for the damage; the damage exists not only on the surface but also inside the BSO crystal. The damage is relative to the structure of the spatial light modulator, the operation mode, and the growth of the BSO crystal. The information provided by the damage is useful for optimizing the structure, the operation modes, and the performance of the photorefractive spatial light modulators.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA