Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Mater Horiz ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39364564

RESUMEN

Flexible dual mode strain-temperature sensors that mimic human skin functions are highly desired for wearable devices and intelligent robots. However, integrating dual sensing characteristics into a single sensor for simultaneous and decoupled strain-temperature detection still remains a challenge. Herein, we report a flexible dual-modal sensor that uses a "neutral surface" structural design technique to integrate an independently prepared temperature sensing layer (TSL) and strain sensing layer (SSL), for simultaneous monitoring of strain and temperature, in a decoupled manner. The TSL consists of a PDMS/BaTiO3 based dielectric layer whose dielectric constant and thickness change in response to temperature fluctuations. The SSL consists of a resistive type Ni80Cr20 film whose resistance changes in response to external strain. After optimizing the temperature and strain sensing characteristics of the TSL and SSL, the obtained dual-modal flexible sensor has shown a broad temperature sensing range (30 to 200 °C), with high temperature sensitivity (-160.90 fF °C-1), excellent linearity (0.998), and highly discernible temperature resolution (0.1 °C). Additionally, the sensor has also exhibited a wide strain monitoring range (20 to 1000 µÎµ), good strain resolution (20 µÎµ or 0.002%), and a fast strain response time (54 ms). When practically demonstrated, our sensor has successfully shown independent perception of strain and temperature, which highlights its promising application potential in the fields of smart robotics and intelligent prosthetics.

2.
Gene ; : 148966, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39341516

RESUMEN

Depression is a widespread emotional disorder with complex pathogenesis. An essential function of the hypothalamus is to regulate emotional disorders. However, further investigation is required to identify the pathogenic genes and molecular mechanisms that contribute to the onset of depression within the hypothalamus. Through RNA-sequencing analysis, this study identified the upregulated expression of interleukin-11 receptor alpha 2 (IL-11Rα2) in the hypothalamus of mice with chronic unpredictable stress-induced depression. This substantial increase in IL-11Rα2, not IL-11Rα1 expression levels in the hypothalamus under the influence of chronic, unpredictable stress was found to be associated with depression-related behaviors. We further showed that IL-11Rα2 is expressed in the arcuate nucleus (ARC) proopiomelanocortin (POMC) neurons of the hypothalamus. Male and female mice exhibited behaviors associated with depression when IL-11Rα2 or its ligand IL-11 was overexpressed in the ARC POMC neurons through the action of an adeno-associated virus. In addition, reductions in the expression levels of proteins involved in the protein kinase B signaling pathways and brain-derived neurotrophic factor were observed upon overexpression of IL-11Rα2 in the hypothalamic ARC. This study emphasizes the importance of IL-11Rα2 in the hypothalamus ARC in the development of depression and presents it as a potential novel target for depression treatment.

3.
Sci Adv ; 10(35): eadq0118, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39213352

RESUMEN

The transport of ions through biological ion channels is regulated not only by their structural characteristics but also by the composition of the phospholipid membrane, which serves as a carrier for nanochannels. Inspired by the modulation of ion currents by lipid membrane composition, exemplified by the activation of the K+ channel of Streptomyces A by anionic lipids, we present a biomimetic nanochannel system based on combining DNA nanotechnology with two-dimensional graphene oxide (GO) nanosheets. By designing multibranched DNA nanowires, we assemble programmable DNA scaffold networks (DSNs) on the GO surface to precisely control membrane composition. Modulating the DSN layers from one to five enhances DNA composition, yielding a maximum 12-fold enhancement in ion current, primarily due to charge effects. Incorporating DNAzymes facilitates reversible modulation of membrane composition, enabling cyclic conversion of ion current. This approach offers a pathway for creating devices with highly efficient, tunable ion transport, applicable in diverse fields like mass transport, environmental protection, biomimetic channels, and biosensors.


Asunto(s)
Grafito , Grafito/química , ADN/química , ADN/metabolismo , Lípidos de la Membrana/metabolismo , Lípidos de la Membrana/química , Nanotecnología/métodos , Membrana Celular/metabolismo , Membrana Celular/química , Transporte Iónico , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Nanocables/química , Materiales Biomiméticos/química
4.
ACS Omega ; 9(32): 34869-34879, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39157111

RESUMEN

In this study, eight lindenane-type sesquiterpene dimers, including five previously undescribed sesquiterpene dimers (1-5), were isolated from the roots of Chloranthus fortunei, and their structures were elucidated using 1D/2D NMR, HRESIMS, and ECD calculations. Compound 1 presents the second example of a type of novel 8,9-seco lindenane-type sesquiterpene dimer, considered a product of 8/9-diketone oxidation. Compounds 2 and 3 represent the third and fourth examples, respectively, of this kind of C-11 methine dimer. Furthermore, compound 4 was considered as an artifact generated from the radical reaction of a known compound chlojaponilide F (6), which was explained by the density functional theory quantum calculation. All isolates were evaluated for their protective activity against the LPS-induced pulmonary epithelial cell line with compound 7 exhibiting the most potent bioactivity. Further in vitro biological evaluation demonstrated that 7 reduced the production of reactive oxygen species and interleukin-1ß, further regulated by the expression of the NLRP3. These results show that compound 7 exhibits therapeutic potential for lung inflammatory diseases.

5.
Clin Cancer Res ; 30(18): 4201-4214, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39024031

RESUMEN

PURPOSE: The purpose of this study was to investigate the remodeling of the multiple myeloma microenvironment after B-cell maturation antigen (BCMA)-targeted chimeric antigen receptor T (CAR-T) cell therapy. EXPERIMENTAL DESIGN: We performed single-cell RNA sequencing on paired bone marrow specimens (n = 14) from seven patients with multiple myeloma before (i.e., baseline, "day -4") and after (i.e., "day 28") lymphodepleted BCMA CAR-T cell therapy. RESULTS: Our analysis revealed heterogeneity in gene expression profiles among multiple myeloma cells, even those harboring the same cytogenetic abnormalities. The best overall responses of patients over the 15-month follow-up are positively correlated with the abundance and targeted cytotoxic activity of CD8+ effector CAR-T cells on day 28 after CAR-T cell infusion. Additionally, favorable responses are associated with attenuated immunosuppression mediated by regulatory T cells, enhanced CD8+ effector T-cell cytotoxic activity, and elevated type 1 conventional dendritic cell (DC) antigen presentation ability. DC re-clustering inferred intramedullary-originated type 3 conventional DCs with extramedullary migration. Cell-cell communication network analysis indicated that BCMA CAR-T therapy mitigates BAFF/GALECTIN/MK pathway-mediated immunosuppression and activates MIF pathway-mediated anti-multiple myeloma immunity. CONCLUSIONS: Our study sheds light on multiple myeloma microenvironment dynamics after BCMA CAR-T therapy, offering clues for predicting treatment responsivity.


Asunto(s)
Antígeno de Maduración de Linfocitos B , Inmunoterapia Adoptiva , Mieloma Múltiple , Receptores Quiméricos de Antígenos , Microambiente Tumoral , Humanos , Mieloma Múltiple/terapia , Mieloma Múltiple/inmunología , Mieloma Múltiple/patología , Antígeno de Maduración de Linfocitos B/inmunología , Antígeno de Maduración de Linfocitos B/genética , Microambiente Tumoral/inmunología , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/genética , Femenino , Depleción Linfocítica , Persona de Mediana Edad , Masculino , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Anciano
6.
Arch Gerontol Geriatr ; 126: 105550, 2024 11.
Artículo en Inglés | MEDLINE | ID: mdl-38991290

RESUMEN

OBJECTIVES: To examine the predictive value of intrinsic capacity decline on functional disability among the elderly. DESIGN: Meta-analysis. METHODS: PubMed, EMBASE, Web of Science, The Cochrane Library, Wanfang Database, China Knowledge Resource Integrated Database (CNKI), Weipu Database (VIP), and Chinese Biomedical Database (CBM) were searched for relevant studies published from the inception until June 1, 2024. Stata 17.0 software was used to perform the meta-analysis. The methodological quality was evaluated using the Newcastle Ottawa Scale. The overall quality of evidence used GRADE guidelines to assess. A study protocol was registered in PROSPERO (CRD42023475461). RESULTS: The meta-analysis included 8 cohort studies including 9744 elderly people. Functional disability including ADL disability (n = 6) and IADL disability (n = 7). The results showed that intrinsic capacity decline could predict ADL disability (HR = 1.08, 95 %CI 1.04-1.12; I2 = 98.2 %, P < 0.001) and IADL disability (HR = 1.11, 95 %CI 1.05-1.17; I2 = 96.4 %, P < 0.001). The overall risk of bias was low. And the grade of evidence that assessed by GRADE guidelines was rated as moderate. CONCLUSIONS: Intrinsic capacity decline is a predictor of functional disability in the elderly. Therefore, screening intrinsic capacity decline has important clinical implications for early identifying the risk of functional disability, which contributes to providing individualized interventions ahead of potential functional disability for the elderly, thereby preventing functional disability, improving the quality of life and promoting healthy aging.


Asunto(s)
Actividades Cotidianas , Evaluación Geriátrica , Anciano , Humanos , Evaluación de la Discapacidad , Personas con Discapacidad/estadística & datos numéricos , Evaluación Geriátrica/métodos
7.
Medicine (Baltimore) ; 103(30): e38978, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058878

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory loss. The main pathological features are neuronal fibrillary tangles caused by amyloid beta deposition and hyperphosphorylation of tau protein, accompanied by neuronal death and loss of synaptic structure. Early diagnosis is the key to the treatment of AD. It is known that some small molecular components are related to the pathogenesis of AD. This article will summarize the common AD biomarkers in cerebrospinal fluid and blood and analyze the current status of AD biomarkers and future research directions. This review summarizes the promising biomarkers for the diagnosis of AD in the last decade and describes their changes in AD body fluids. The diagnostic biomarkers related to AD were mainly distributed in cerebrospinal fluid and blood. Significant changes in these molecules can be detected in cerebrospinal fluid and blood, and they are correlated with AD severity. These humoral molecules have necessary relationship with AD and can be used as AD biomarkers to assist early diagnosis of AD.


Asunto(s)
Enfermedad de Alzheimer , Biomarcadores , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/líquido cefalorraquídeo , Humanos , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Diagnóstico Precoz , Proteínas tau/líquido cefalorraquídeo , Proteínas tau/sangre , Péptidos beta-Amiloides/sangre , Péptidos beta-Amiloides/líquido cefalorraquídeo
8.
Acta Biomater ; 184: 156-170, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38897336

RESUMEN

Bacterial infections are a serious threat to wound healing and skin regeneration. In recent years, photothermal therapy (PTT) has become one of the most promising tools in the treatment of infectious diseases. However, wound dressings with photo-responsive properties are currently still limited by the difficulties of biosafety and thermal stability brought by the introduction of photosensitizers or photothermal agents. Therefore, how to improve the therapeutic efficiency and biosafety from material design is still a major challenge at present. In this study, the carboxymethyl chitosan (CMCS) and protocatechuic aldehyde (PA) hydrogels based on horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) enzymatic catalysis was developed. Therein, HRP and H2O2 catalyzed cross-linking while polymerizing PA, which not only endowed the hydrogels with photothermal responsiveness but also with good biosafety through this enzyme-catalyzed green approach. Meanwhile, the hydrogels possessed highly efficient bacteriostatic ability with the assistance of near infrared (NIR). Moreover, the ultra-rapid gelation, strong tissue adhesion, high swelling ability, good antioxidant property and hemostatic property of the CMCS-PA hydrogels based on HRP/H2O2 enzymatic catalysis were suitable for the treatment of skin wounds. Meanwhile, NIR-assistant CMCS-PA hydrogels based on HRP/H2O2 enzymatic catalysis reduced inflammation, decreased bacterial infection, and promoted collagen deposition and angiogenesis, which showed remarkable therapeutic effects in a skin wound infection model. All results indicate that this green approach to introduce photothermal property by HRP-catalyzed PA polymerization endows the hydrogels with efficient photothermal conversion efficiency, suggesting that they are promising to provide new options for replacing photothermal agents and photosensitizers. STATEMENT OF SIGNIFICANCE: In recent years, wound dressings with photo-responsive properties are currently still limited by the difficulties of biosafety and thermal stability brought by the introduction of agent photosensitizers or photothermal agents. In this study, the carboxymethyl chitosan and protocatechuic aldehyde hydrogels based on horseradish peroxidase and hydrogen peroxide enzymatic catalysis was developed. The photothermal properties of hydrogels were transformed from absent to present just by horseradish peroxidase-catalyzed protocatechuic aldehyde polymerization in a green approach. Meanwhile, the hydrogels possessed highly efficient bacteriostatic ability with the assistance of near infrared. The green approach of introducing photothermal properties from material design solves the biosafety challenge. Therefore, this study is expected to provide new options for alternative photothermal agents and photosensitizers.


Asunto(s)
Antibacterianos , Antioxidantes , Quitosano , Hidrogeles , Cicatrización de Heridas , Hidrogeles/química , Hidrogeles/farmacología , Hidrogeles/síntesis química , Cicatrización de Heridas/efectos de los fármacos , Animales , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Antioxidantes/farmacología , Antioxidantes/química , Quitosano/química , Quitosano/farmacología , Quitosano/análogos & derivados , Peróxido de Hidrógeno , Tecnología Química Verde , Piel/patología , Piel/efectos de los fármacos , Hemostasis/efectos de los fármacos , Ratones , Peroxidasa de Rábano Silvestre/química , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/patología , Infección de Heridas/microbiología
9.
Mater Today Bio ; 26: 101113, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38933414

RESUMEN

Burns represent a prevalent global health concern and are particularly susceptible to bacterial infections. Severe infections may lead to serious complications, posing a life-threatening risk. Near-infrared (NIR)-assisted photothermal antibacterial combined with antioxidant hydrogel has shown significant potential in the healing of infected wounds. However, existing photothermal agents are typically metal-based, complicated to synthesize, or pose biosafety hazards. In this study, we utilized plant-derived blackcurrant extract (B) as a natural source for both photothermal and antioxidant properties. By incorporating B into a G-O hydrogel crosslinked through Schiff base reaction between gelatin (G) and oxidized pullulan (O), the resulting G-O-B hydrogel exhibited good injectability and biocompatibility along with robust photothermal and antioxidant activities. Upon NIR irradiation, the controlled temperature (around 45-50 °C) generated by the G-O-B hydrogel resulted in rapid (10 min) and efficient killing of Staphylococcus aureus (99 %), Escherichia coli (98 %), and Pseudomonas aeruginosa (82 %). Furthermore, the G-O-B0.5 hydrogel containing 0.5 % blackcurrant extract promoted collagen deposition, angiogenesis, and accelerated burn wound closure conclusively, demonstrating that this well-designed and extract-contained hydrogel dressing holds immense potential for enhancing the healing process of bacterial-infected burn wounds.

10.
Crit Rev Food Sci Nutr ; : 1-22, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38779723

RESUMEN

A large and growing body of literature has investigated the broad antibacterial spectrum and strong synergistic antimicrobial activity of medium chain monoglycerides (MCMs) have been widely investigated. Recently, more and more researches have focused on the regulation of MCMs on metabolic health and gut microbiota both in vivo and in vitro. The current review summarizes the digestion, absorption and metabolism of MCMs. Subsequently, it focuses on the functional and nutritional properties of MCMs, including the antibacterial and antiviral characteristics, the modulation of metabolic balance, the regulation of gut microbiota, and the improvement in intestinal health. Additionally, we discuss the most recent developments and application of MCMs using nanotechnologies in food industry, poultry and pharmaceutical industry. Additionally, we analyze recent application examples of MCMs and their nanotechnology formation used in food. The development of nanotechnology platforms facilitating molecular encapsulation and functional presentation contribute to the application of hydrophobic fatty acids and monoglycerides in food preservation and their antibacterial effectiveness. This study emphasizes the metabolic mechanisms and biological activity of MCMs by summarizing the prevailing state of knowledge on this topic, as well as providing insights into prospective techniques for developing the beneficial applications of MCMs to realize the industrialized production.

11.
J Med Chem ; 67(7): 5617-5641, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38563549

RESUMEN

NIK plays a crucial role in the noncanonical NF-κB signaling pathway associated with diverse inflammatory and autoimmune diseases. Our study presents compound 54, a novel NIK inhibitor, designed through a structure-based scaffold-hopping approach from the previously identified B022. Compound 54 demonstrates remarkable selectivity and potency against NIK both in vitro and in vivo, effectively suppressing pro-inflammatory cytokines and nitric oxide production. In mouse models, compound 54 protected against LPS-induced systemic sepsis, reducing AST, ALT, and AKP liver injury markers. Additionally, it also attenuates sepsis-induced lung and kidney damage. Mechanistically, compound 54 blocks the noncanonical NF-κB signaling pathway by targeting NIK, preventing p100 to p52 processing. This work reveals a novel class of NIK inhibitors with significant potential for sepsis therapy.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Sepsis , Animales , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo , FN-kappa B/metabolismo , Quinasa de Factor Nuclear kappa B , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Sepsis/inducido químicamente , Sepsis/tratamiento farmacológico
12.
Brain Res Bull ; 212: 110952, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38636611

RESUMEN

Anxiety is a prevalent mental illness known for its high incidence, comorbidity, and tendency to recur, posing significant societal and individual burdens. Studies have highlighted Interleukin-19 (IL-19) as having potential relevance in neuropsychiatric disorders. Our previous research revealed that IL-19 overexpression in colonies exacerbated anxiety-related behaviors induced by dextran sodium sulfate/stress. However, the precise role and molecular mechanisms of IL-19 in anxiety regulation remain uncertain. In this study, we initiated an acute restraint stress (ARS)-induced anxious mouse model and identified heightened expression of IL-19 and IL-20Rα in the medial prefrontal cortex (mPFC) of ARS mice. Notably, IL-19 and IL-20Rα were predominantly present in the excitatory pyramidal neurons of the mPFC under both basal and ARS conditions. Utilizing the adeno-associated virus (AAV) strategy, we demonstrated that IL-19 overexpression in the mPFC induced anxiety-related behaviors and elevated stress susceptibility. Additionally, we observed decreased protein levels of brain-derived neurotrophic factor (BDNF) and postsynaptic density protein 95 (PSD95) in the mPFC of IL-19 overexpression mice, accompanied by reduced phosphorylation of in the p38, JNK, and Erk signaling pathways. These findings emphasize the role of IL-19 in modulating anxiety-related behaviors within the mPFC and suggest its potential as a pathological gene and therapeutic target for anxiety.


Asunto(s)
Ansiedad , Factor Neurotrófico Derivado del Encéfalo , Interleucinas , Sistema de Señalización de MAP Quinasas , Corteza Prefrontal , Estrés Psicológico , Animales , Corteza Prefrontal/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ansiedad/metabolismo , Ratones , Masculino , Sistema de Señalización de MAP Quinasas/fisiología , Interleucinas/metabolismo , Estrés Psicológico/metabolismo , Ratones Endogámicos C57BL , Conducta Animal/fisiología , Modelos Animales de Enfermedad , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
13.
Int J Biol Macromol ; 262(Pt 1): 129988, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38325692

RESUMEN

Bacterial infection and oxidative stress impede clinical wound healing. Herein, the plant-derived cowberry extract (CE) was first explored as a natural photothermal agent and antioxidant to deal with bacterial infection and oxidative stress. After loading in the carboxymethyl chitosan (CMCs)/oxidized dextran (Odex) hydrogel, the photothermal effect of CE was highly enhanced by CMCs. The controlled temperature induced by CE-containing hydrogel under NIR laser irradiation could rapidly (10 min) and effectively kill Staphylococcus aureus (S. aureus, 99.3 %) and Escherichia coli (E. coli, 94.6 %). Besides, this hydrogel exhibited a fast gelation and hemostasis abilities, high stability, adhesion and ROS scavenging capabilities, as well as good injectability and biocompatibility. Above superior properties make this hydrogel to accelerate the wound healing in S. aureus-infected mice, and it is expected to be a potential clinical wound dressing.


Asunto(s)
Quitosano , Infecciones Estafilocócicas , Infección de Heridas , Animales , Ratones , Antioxidantes/farmacología , Hidrogeles/farmacología , Escherichia coli , Staphylococcus aureus , Extractos Vegetales/farmacología , Cicatrización de Heridas , Antibacterianos/farmacología
14.
Int J Biol Macromol ; 254(Pt 3): 128027, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37952801

RESUMEN

Infected wounds pose a serious threat to public health and pose a significant challenge and financial burden worldwide. The treatment of infected wounds is now an urgent problem to be solved. Herein, mild hyperthermia-assisted hydrogels composed of carboxymethyl chitosan (CMCs), oxidized dextran (Odex), epigallocatechin gallate (EGCG) and PtNPs@PVP (CAT-like nanoenzymes) were proposed for the repair of infected wounds. The incorporation of PtNPs@PVP nanoenzymes give the hydrogels excellent photothermal property and CAT-like activity. When the temperature is maintained at 42-45 °C under 808 nm near infrared (NIR) exposure, the CMCs/Odex/EGCG/Nanoenzymes (COEN2) hydrogel demonstrated highly enhanced antibacterial ability (95.9 % in vivo), hydrogen peroxide (H2O2) scavenging ratio (85.1 % in vitro) and oxygen supply (20.7 mg/L in vitro). Furthermore, this mild-heat stimulation also promoted angiogenesis in the damaged skin area. Overall, this multifunctional hydrogel with antibacterial, antioxidant, oxygen supply, hemostasis, and angiogenesis capabilities has shown great promise in the repair of infected wounds. This study establishes the paradigm of enhanced infected wound healing by mild hyperthermia-assisted H2O2 scavenging, oxygen supplemental, and photothermal antibacterial hydrogels.


Asunto(s)
Quitosano , Hipertermia Inducida , Infección de Heridas , Humanos , Hidrogeles/farmacología , Peróxido de Hidrógeno , Infección de Heridas/tratamiento farmacológico , Oxígeno , Antibacterianos/farmacología , Cicatrización de Heridas
15.
Int J Biol Macromol ; 258(Pt 2): 128962, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38145691

RESUMEN

Platelet-rich plasma (PRP) contains a variety of growth factors (GFs) and has been used in the treatment of a variety of diseases, including skin lesions. In particular, PRP with low immunogenicity will be more widely used. However, the explosive release of GFs limits its further application. In order to achieve controlled release of GFs, a multifunctional and reactive oxygen species (ROS)/pH dual responsive hydrogel was developed to load PRP derived from human cord blood for the treatment of skin wound healing. Based on the hydrogen bond and Schiff base interaction, carboxymethyl chitosan (CMCS), oxidized dextran (Odex) and oligomeric procyanidins (OPC) were crosslinked to form CMCS/Odex/OPC/PRP hydrogel with good injectability, self-healing, adhesion, ROS scavenging, antibacterial activity, controlled and sustained release of GFs. In vitro cell experiments suggested that this hydrogel possessed excellent biocompatibility and could promote the proliferation and migration of L929. In vivo healing of full-layer skin wounds further indicated that the prepared hydrogel could regulate inflammation and promote epithelialization, collagen deposition, and angiogenesis. In summary, this present study demonstrates that CMCS/Odex/OPC/PRP hydrogel may serve as a promising multifunctional dressing for skin wound healing.


Asunto(s)
Quitosano , Plasma Rico en Plaquetas , Humanos , Hidrogeles/química , Quitosano/química , Preparaciones de Acción Retardada , Especies Reactivas de Oxígeno , Cicatrización de Heridas , Antibacterianos/análisis , Péptidos y Proteínas de Señalización Intercelular , Plasma Rico en Plaquetas/química , Concentración de Iones de Hidrógeno
16.
Int J Biometeorol ; 68(4): 625-635, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38147118

RESUMEN

Particulate matter (PM10) changes have been confirmed as one of the contributory factors affecting human health, the association between PM10 pollution and the hospitalization of chronic obstructive pulmonary disease (COPD) with comorbidity diseases was rarely reported. The same inpatient more than twice times admissions with COPD illness from January 1, 2016 to December 31, 2021 were identified from hospitals in the 17 cities of Henan, Central China. City-specific associations were firstly estimated using the case time series (CTS) model and then combined to obtain the regional average association. The multivariate meta-analytic model produces pooled estimates of the set of coefficients representing the PM10-COPD hospitalizations association across the 17 cities. Cause-specific hospitalization analyses were performed by COPD patients with different comorbidity combinations. A total of 34,348 elderly (age ≥ 65) subjects were analyzed and with a total of 35,122.35 person-years. These coefficients can be used to compute the linear exposure-response curve expressed as relative risk (RR) in per 10 µg/m3 increase in PM10 at lag03, which was 1.0091 (95% CI 1.0070-1.0112) for COPD with comorbidity, 1.0089 (95% CI 1.0067-1.0110) for COPD with circulatory system diseases, 1.0079 (95% CI 1.0052-1.0105) for COPD with respiratory system diseases, 1.0076 (95% CI 1.0032-1.0121) for COPD with endocrine system diseases, and 1.0087 (95% CI 1.0013-1.0162) for COPD with genitourinary system diseases, respectively. Some heterogeneity was found across cities, with estimates ranging from 1.0227 in the Puyang and Jiaozuo to 1.0053 in Henan Provance, China. The effect of higher PM10, on average, was higher in studies for northern cities, with a steeper raise in risk: per 10 µg/m3 increase in PM10, the RR from 1.0062 (95% CI 1.0030-1.0093) for the 10th percentile of latitude to 1.0124 (95% CI 1.0089-1.0160) for the 90th percentile. Our findings indicated that PM10 exposure may increase the risk of hospitalizations for COPD with comorbidity. Moreover, there might be a higher morbidity risk associated with PM10 in northern latitudes, indicating that stricter air quality standards could potentially reduce PM10-related morbidity among individuals with COPD. These findings have implications for the implementation of effective clean air interventions aligned with national climate policies.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Anciano , Contaminantes Atmosféricos/análisis , Ciudades/epidemiología , Contaminación del Aire/análisis , Material Particulado/análisis , Hospitalización , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , China/epidemiología , Comorbilidad , Exposición a Riesgos Ambientales/análisis
18.
Anal Methods ; 15(42): 5564-5576, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37861233

RESUMEN

Owing to the versatile photophysical and chemical properties, spherical nucleic acids (SNAs) have been widely used in biosensing. However, traditional SNAs are formed by self-assembly of thiolated DNA on the surface of a gold nanoparticle (AuNP), where it is challenging to precisely control the orientation and surface density of DNA. As a new SNA, a polyadenine (polyA)-mediated SNA using the high binding affinity of consecutive adenines to AuNPs shows controllable surface density and configuration of DNA, which can be used to improve the performance of a biosensor. Herein, we first introduce the properties of polyA-mediated SNAs and fundamental principles regarding the polyA-AuNP interaction. Then, we provide an overview of current representative synthesis methods of polyA-mediated SNAs and their advantages and disadvantages. After that, we summarize the application of polyA-mediated SNAs in biosensing based on fluorescence and colorimetric methods, followed by discussion and an outlook of future challenges in this field.


Asunto(s)
Nanopartículas del Metal , Ácidos Nucleicos , Oro/química , Hibridación de Ácido Nucleico/métodos , Nanopartículas del Metal/química , ADN/química
19.
Opt Lett ; 48(17): 4677-4680, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37656584

RESUMEN

Metalenses have been widely investigated for their features of high design freedom. For practical applications, it is necessary to maximize the efficiency of the metalens. However, it is a great challenge to realize both a high numerical aperture (NA) and high-efficiency metalens in the community. Here, we introduce a method to design a hybrid metalens with a large numerical aperture and high focusing efficiency at terahertz frequency. The hybrid metalens consists of gradient metasurfaces in the central area and metagrating in the peripheral area to achieve high-efficiency beam focusing. To verify this concept, a hybrid metalens with a numerical aperture of 0.95 was designed at λ = 118.8 µm. The simulation results demonstrate that the focusing efficiency of the hybrid metalens is 65.8%. The experimental results show that the designed metalens is able to increase the focusing efficiency from 22.8% to 41.7%. The full widths at half maxima (FWHMs) of the focused spots of the hybrid metalens in the x direction and y direction are 0.72λ and 0.45λ, respectively. The proposed high-efficiency hybrid metalens has promising application prospects in various applications of a complex optical system.

20.
Langmuir ; 39(36): 12890-12909, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37650549

RESUMEN

Two-dimensional (2D) Janus materials exhibit an outstanding potential that can meet the rigorous requirements of photocatalytic water splitting resulting from their unique atomic arrangement. However, these materials are quite scarce. Through ab initio density functional theory calculations, we introduce a kagome topology into the honeycomb lattice of blue phosphorene using phosphorus and bismuth atoms to build a hybrid honeycomb-like kagome lattice, realized by a hitherto unknown kagome-like Janus-like BiP3 monolayer with robust stability. Excitingly, the out-of-plane asymmetry benefiting from kagome and honeycomb topologies gives rise to a significantly negative out-of-plane Poisson's ratio and an obvious built-in electric field pointing from the sublayer of the P atom to the sublayer of the Bi atom. In conjunction with the investigations that encompass semiconducting properties, such as a quasi-direct gap, suitable band-edge positions, effective visible-light absorption, and high carrier mobility, the BiP3 monolayer achieves overall water splitting at pH 0-14 regardless of strain. Moreover, this intrinsic electric field provides a sufficient photogenerated carrier driving force for water splitting. The bare BiP3 comprises P and Bi atoms that function as catalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) active sites, respectively. Upon exposure to light, the reaction of water into H2 and O2 can be observed across a pH range of 0-14. Meanwhile, by designing a transition-metal single-atom catalyst (TM@BiP3), our investigations have shown that embedding a single TM on BiP3 is a feasible route to improving the HER/OER activity by reducing the overpotentials to -0.039 and 0.58 eV for Mo and Os atoms, respectively. In this case, the positive value of the external potential acts as a sufficient OER driving force, i.e., in the light environment, the Os@BiP3 system can promote water molecules spontaneously oxidized into O2 at pH 0-14.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA