Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 11(25): e2402599, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38654629

RESUMEN

The generally undesirable bandgap and electron-hole complexation of inorganic sonosensitizers limit the efficiency of reactive oxygen species (ROS) generation, affecting the effectiveness of sonodynamic therapy (SDT). Comparatively, the novel polyvinylpyrrolidone-modified copper bismuthate (PCBO) sonosensitizers are manufactured for a "three-step" SDT promotion. In brief, first, the strong hybridization between Bi 6s and O 2p orbitals in PCBO narrows the bandgap (1.83 eV), facilitating the rapid transfer of charge carriers. Additionally, nonequivalent [CuO4]6- layers reduce crystal symmetry, confer PCBO unique piezoelectricity, and improve electron-hole separation under ultrasonic (US) excitation. This allows PCBO to convert US energy into chemical energy to produce ROS, achieving the accumulation of abundant ROS, resulting in apoptosis and tumor suppression. Concurrently, PCBO also acts as a glutathione scavenger to reduce tumor antioxidant capacity and improve efficacy. To the best of authors understanding, this study reveals PCBO as an innovative piezoelectric sonosensitizer and provides a meaningful paradigm for designing energy conversion strategies for tumor suppression.

2.
Food Chem X ; 20: 100963, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38144843

RESUMEN

Carbon dots (CDs), a novel type of nanomaterial, play crucial roles in the agriculture field. However, it remains unclear their impacts on the flavor quality of vegetables. The present study synthesized a novel chitooligosaccharide-peanut oligopeptide-carbon dots (COS-POP-CDs) material through the chitooligosaccharide (COS) and peanut oligopeptide (POP) high temperature Maillard reactions and studied its effect on the flavor quality of Chinese cabbage (Choy sum). Results indicated that COS-POP-CDs emit blue visible light that readily absorbed by chloroplasts, while also demonstrating some degree of antibacterial and antioxidant activities. After transplanting of Choy sum, foliar spraying 0.12 mg/mL COS-POP-CDs twice can increase the content of soluble proteins, Vitamin C, and enhance the strawberry and spicy flavors of Choy Sum. After harvest of Choy Sum, foliar spraying 0.12 mg/mL COS-POP-CDs once can slow down the spoilage. These results suggest that COS-POP-CDs have significant potential to improve crop quality.

3.
Ecotoxicol Environ Saf ; 161: 534-541, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29929129

RESUMEN

Iron plaque (IP) on root surface can enhance the tolerance of plants to environmental stresses. However, it remains unclear the impact of Fe2+ on cadmium (Cd) toxicity to rice (Oryza sativa) seedlings. In this study, the effects of different Fe2+ and Cd2+ concentration combinations on rice growth were examined hydroponically. Results indicated that Fe2+ concentration up to 3.2 mM did not damage rice roots while induced IP formation obviously. Cd2+ of 10 µM repressed rice growth significantly, while the addition of 0.2 mM Fe2+ to 10 µM Cd2+ solution (Cd+Fe) did not damage rice roots, indicating that Fe2+ could ameliorate Cd toxicity to rice seedlings. Microstructure analysis showed Cd+Fe treatment induced the formation of IP with dense and intricate network structure, Cd adsorption on the root surface was reduced significantly. Cd concentration of rice roots and shoots and Cd translocation from roots to shoots with Fe+Cd treatment were reduced by 34.1%, 36.0% and 20.1%, respectively, in comparison to a single Cd treatment. Noteworthy, the removal of IP resulted in a larger loss of root biomass under Cd treatment. In addition, Cd+Fe treatment increased the activities of root superoxide dismutase and catalase by 105.5% and 177.4%, and decreased H2O2 and O2·- accumulation of rice roots by 56.9% and 35.9%, and recovered Cd-triggered electrolyte leakage obviously, when compared with a single Cd treatment. The results from this experiment indicated that the formed dense IP on rice roots decreased Cd absorption and reactive oxygen species accumulation, and Fe2+ supply alleviated Cd toxicity to rice seedlings.


Asunto(s)
Cadmio/toxicidad , Compuestos Ferrosos/metabolismo , Oryza/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Transporte Biológico , Biomasa , Peróxido de Hidrógeno/metabolismo , Hidroponía , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Oxígeno/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/metabolismo
4.
Environ Sci Pollut Res Int ; 25(4): 3571-3587, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29164457

RESUMEN

Iron plaque (IP) is valuable in nutrient management and contaminant tolerance for rice (Oryza sativa) because it can adsorb various nutrients and toxic ions. Crystalline ratio (CR) can be defined as the proportion of crystalline iron (CI) to total IP to describe IP crystallinity. Although the knowledge on IP has abounded, the information on the relationship among its formation condition, surface properties, and CR remains insufficient. In this study, quartz sand-soil cultivation with rice was conducted to explore the effect of drying-submergence alternation (DSA) on CI, amorphous iron (AI), CR, root oxidizing capacity (ROC), and surface properties of IP with different treatment durations and at different stages. Fourteen-day DSA treatment increased CI to 2.20 times of that after continuous submergence (CS) but decreased AI to 72.3% of that after CS. Correspondingly, CR was raised to 6.89% from 4.08%. Remarkably, CR of IP after DSA ending in submergence and ending in drying was 6.89% and 4.23%, respectively. In addition, ROC after 14-day DSA was enhanced to twice of that after CS. Results from scanning electronic microscope suggested that 14-day DSA induced thinner sheets with finer particles in IP compared to that after CS. Results from X-ray diffraction revealed that IP contained higher proportions of goethite, lepidocrocite, magnetite, and hematite after DSA than those after CS. Variable charge and surface area of IP after DSA were only 26.5% and 32.0% of those after CS, respectively. Together, our results indicated that proper strength DSA promoted ROC and transformation from AI to CI, and consequently increased CR of IP, while it changed its surface properties.


Asunto(s)
Hierro/análisis , Modelos Teóricos , Oryza/química , Raíces de Plantas/química , Contaminantes del Suelo/análisis , Suelo/química , Adsorción , Desecación , Compuestos Férricos/análisis , Compuestos Ferrosos/análisis , Oxidación-Reducción , Propiedades de Superficie
5.
Biol Trace Elem Res ; 145(1): 101-8, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21826608

RESUMEN

Silicate (Si) can enhance plant resistance or tolerance to the toxicity of heavy metals. However, it remains unclear whether Si can ameliorate lead (Pb) toxicity in banana (Musa xparadisiaca) roots. In this study, treatment with 800 mg kg(-1) Pb decreased both the shoot and root weight of banana seedlings. The amendment of 800 mg kg(-1) Si (sodium metasilicate, Na(2)SiO(3)·9H(2)O) to the Pb-contaminated soil enhanced banana biomass at two growth stages significantly. The amendment of 800 mg kg(-1) Si significantly increased soil pH and decreased exchangeable Pb, thus reducing soil Pb availability, while Si addition of 100 mg kg(-1) did not influence soil pH. Results from Pb fractionation analysis indicated that more Pb were in the form of carbonate and residual-bound fractions in the Si-amended Pb-contaminated soils. The ratio of Pb-bound carbonate to the total Pb tended to increase with increasing growth stages. Treatment with 100 mg kg(-1) Si had smaller effects on Pb forms in the Si-amended soils than that of 800 mg kg(-1) Si. Pb treatment decreased the xylem sap greatly, but the addition of Si at both levels increased xylem sap and reduced Pb concentration in xylem sap significantly in the Si-amended Pb treatments. The addition of Si increased the activities of POD, SOD, and CAT in banana roots by 14.2% to 72.1% in the Si-amended Pb treatments. The results suggested that Si-enhanced tolerance to Pb toxicity in banana seedlings was associated with Pb immobilization in the soils, the decrease of Pb transport from roots to shoots, and Si-mediated detoxification of Pb in the plants.


Asunto(s)
Plomo/toxicidad , Musa/efectos de los fármacos , Silicatos/farmacología , Contaminantes del Suelo/toxicidad , Biodegradación Ambiental/efectos de los fármacos , Biomasa , Catalasa/metabolismo , Relación Dosis-Respuesta a Droga , Concentración de Iones de Hidrógeno , Plomo/metabolismo , Musa/crecimiento & desarrollo , Musa/metabolismo , Peroxidasa/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Rizosfera , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Silicatos/metabolismo , Suelo/análisis , Contaminantes del Suelo/metabolismo , Superóxido Dismutasa/metabolismo , Xilema/efectos de los fármacos , Xilema/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA