Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Annu Rev Phys Chem ; 75(1): 371-395, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38941524

RESUMEN

In the past two decades, machine learning potentials (MLPs) have driven significant developments in chemical, biological, and material sciences. The construction and training of MLPs enable fast and accurate simulations and analysis of thermodynamic and kinetic properties. This review focuses on the application of MLPs to reaction systems with consideration of bond breaking and formation. We review the development of MLP models, primarily with neural network and kernel-based algorithms, and recent applications of reactive MLPs (RMLPs) to systems at different scales. We show how RMLPs are constructed, how they speed up the calculation of reactive dynamics, and how they facilitate the study of reaction trajectories, reaction rates, free energy calculations, and many other calculations. Different data sampling strategies applied in building RMLPs are also discussed with a focus on how to collect structures for rare events and how to further improve their performance with active learning.

2.
ACS Biomater Sci Eng ; 10(6): 3655-3672, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38743527

RESUMEN

Slippery liquid-infused porous surface (SLIPS), inspired by the Nepenthes pitcher plant, exhibits excellent performances as it has a smooth surface and extremely low contact angle hysteresis. Biomimetic SLIPS attracts considerable attention from the researchers for different applications in self-cleaning, anti-icing, anticorrosion, antibacteria, antithrombotic, and other fields. Hence, SLIPS has shown promise for applications across both the biomedical and industrial fields. However, the manufacturing of SLIPS with strong bonding ability to different substrates and powerful liquid locking performance remains highly challenging. In this review, a comprehensive overview of research on SLIPS for medical applications is conducted, and the design parameters and common fabrication methods of such surfaces are summarized. The discussion extends to the mechanisms of interaction between microbes, cells, proteins, and the liquid layer, highlighting the typical antifouling applications of SLIPS. Furthermore, it identifies the potential of utilizing the controllable factors provided by SLIPS to develop innovative materials and devices aimed at enhancing human health.


Asunto(s)
Propiedades de Superficie , Porosidad , Humanos , Materiales Biocompatibles Revestidos/química
3.
Environ Sci Process Impacts ; 26(5): 891-901, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38591146

RESUMEN

Microplastic (MP) pollution has garnered global attention in recent years. Although anthropogenic factors have been extensively studied for their impacts on MP pollution, there is still a lack of research on the relationship between non-anthropogenic factors and MP occurrence in inland freshwater. This study investigated MP pollution in Donghu Lake, the largest urban freshwater lake in China, to examine the effects of rainfall and lakeshore soil properties on MP pollution. The MP abundance in the surface water of Donghu Lake was 5.84 ± 2.95 items per L under the equilibrium state. However, during and after rainfall, the MP abundances significantly increased to 8.27 ± 5.65 items per L and 7.60 ± 4.04 items per L, respectively (p < 0.05). This increase could be attributed to an increase in the amount of MPs transported to the lake via atmospheric deposition and rainfall runoff, as well as the re-suspension of MP debris in sediment during stronger hydrodynamics. A statistically significant negative correlation was observed between MP abundance and lakeshore soil particle size. It suggested that a high proportion of large-sized soil particles created large pores that enabled MPs to be deposited in the surface layer of soil to migrate to deeper layers. As a result, the amount of MPs in the surface soil and transported to the lake via surface runoff was low. It is of practical significance to understand the sources and distribution impact factors of MPs in urban lakes. The fate and effects of MPs retained in the inland freshwater environments should receive more attention.


Asunto(s)
Monitoreo del Ambiente , Lagos , Microplásticos , Lluvia , Suelo , Contaminantes Químicos del Agua , China , Lagos/química , Lluvia/química , Suelo/química , Microplásticos/análisis , Contaminantes Químicos del Agua/análisis
4.
Langmuir ; 40(15): 8271-8283, 2024 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-38557053

RESUMEN

Surface modification of lubricating coatings on biomedical devices is a pivotal strategy to improve the overall performance and clinical efficacy, significantly reducing friction between devices and human tissues and mitigating tissue damage during intervention and long-term implantation. Recently, various hydrophilic polymeric materials have been used for achieving surface functionalization, endowing the biomedical device with excellent superlubrication performance. N-Vinylpyrrolidone (NVP) and 2-methacryloyloxyethyl phosphorylcholine (MPC) are two typical representatives of nonionic and zwitterionic materials. However, there is still a research gap in a comparative study of the lubrication mechanisms and properties between them. In this study, a bioinspired and dopamine-assisted codeposition technique was used to fabricate biomimetic hydrophilic coatings, including P(DMA-NVP) and P(DMA-MPC), on polyurethane. To achieve a thorough comparative analysis of the self-adhesive coating performance, 3 M ratios of the copolymers were synthesized and comprehensive material evaluations were conducted. Additionally, surface morphology, hydrophilicity, and lubrication at both the microscale and macroscale were performed. It was found that both hydrophilic coatings exhibited good stability. The P(DMA-MPC) coating, due to the ability to attract and bind a large number of water molecules, demonstrated superior lubrication effects compared to the P(DMA-NVP) coating. The study provides an in-depth understanding of the lubrication behavior of the self-adhesive coatings to enhance the functionality and application in biomedical engineering.


Asunto(s)
Polímeros , Cementos de Resina , Humanos , Lubrificación , Agua
5.
Adv Mater ; 36(18): e2308750, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38289228

RESUMEN

Semi-transparent organic solar cells (ST-OSCs) possess significant potential for applications in vehicles and buildings due to their distinctive visual transparency. Conventional device engineering strategies are typically used to optimize photon selection and utilization at the expense of power conversion efficiency (PCE); moreover, the fixed spectral utilization range always imposes an unsatisfactory upper limit to its light utilization efficiency (LUE). Herein, a novel solid additive named 1,3-diphenoxybenzene (DB) is employed to dual-regulate donor/acceptor molecular aggregation and crystallinity, which effectively broadens the spectral response of ST-OSCs in near-infrared region. Besides, more visible light is allowed to pass through the devices, which enables ST-OSCs to possess satisfactory photocurrent and high average visible transmittance (AVT) simultaneously. Consequently, the optimal ST-OSC based on PP2+DB/BTP-eC9+DB achieves a superior LUE of 4.77%, representing the highest value within AVT range of 40-50%, which also correlates with the formation of multi-scale phase-separated morphology. Such results indicate that the ST-OSCs can simultaneously meet the requirements for minimum commercial efficiency and plant photosynthesis when integrated with the roofs of agricultural greenhouses. This work emphasizes the significance of additives to tune the spectral response in ST-OSCs, and charts the way for organic photovoltaics in economically sustainable agricultural development.

6.
Diabetes Metab Syndr Obes ; 16: 2283-2293, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37551338

RESUMEN

Purpose: Metabolic associated fatty liver disease is a novel concept defined as fatty liver associated with metabolic disorders. We investigated the effect of metabolic associated fatty liver disease on hepatocellular carcinoma patient mortality. Patients and Methods: A total of 624 patients with hepatocellular carcinoma between 2012 and 2020 were enrolled in this retrospective study. Hepatic steatosis was diagnosed using computed tomography or magnetic resonance imaging. Metabolic associated fatty liver disease was defined based on the proposed criteria in 2020. Propensity score matching was performed for patients with metabolic associated fatty liver disease and those without the condition. A Cox proportional hazards regression model was used to evaluate the association between metabolic associated fatty liver disease and hepatocellular carcinoma patient outcomes. Results: Patients with hepatocellular carcinoma and metabolic associated fatty liver disease tended to achieve better outcomes than did those without metabolic associated fatty liver disease after matching (p<0.001). Metabolic associated fatty liver disease was significantly associated with better prognosis in patients with concurrent hepatitis B infection (p<0.001). Moreover, high levels of hepatitis B viral DNA in serum samples was associated with a significantly increased risk of death in patients without non-metabolic associated fatty liver disease (p=0.045). Additionally, the association between metabolic associated fatty liver disease and survival in hepatitis B virus-related hepatocellular carcinoma was similar in all subgroups based on metabolic traits. Conclusion: Metabolic associated fatty liver disease increases the survival rate of patients with hepatocellular carcinoma and hepatitis B virus infection. The potential interaction of steatosis and virus replication should be considered for future research and clinical treatment strategies.

7.
Small ; 19(41): e2303226, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37312403

RESUMEN

A cross-linking strategy can result in a three-dimensional network of interconnected chains for the copolymers, thereby improving their mechanical performance. In this work, a series of cross-linked conjugated copolymers, named PC2, PC5, and PC8, constructed with different ratios of monomers are designed and synthesized. For comparison, a random linear copolymer, PR2 is also synthesized based on the similar monomers. When blended with Y6 acceptor, the cross-linked polymers PC2, PC5, and PC8-based polymer solar cells (PSCs) achieve superior power conversion efficiencies (PCEs) of 17.58%, 17.02%, and 16.12%, respectively, which are higher than that (15.84%) of the random copolymer PR2-based devices. Moreover, the PCE of PC2:Y6-based flexible PSC retains ≈88% of the initial efficiency value after 2000 bending cycles, overwhelming the PR2:Y6-based device with the remaining 12.8% of the initial PCE. These results demonstrate that the cross-linking strategy is a feasible and facile approach to developing high-performance polymer donors for the fabrication of flexible PSCs.

8.
Clin Res Hepatol Gastroenterol ; 47(7): 102150, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37269896

RESUMEN

Patients with chronic liver disease (CLD) are at a greater risk of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection. This study investigated the antibody response to inactivated SARS-CoV-2 vaccination in a long-term prospective cohort of CLD patients. The seropositivity rates and antibody concentrations of anti-SARS-CoV-2 NAbs were similar among patients with different severity of CLD 6 months after the third vaccination. In addition, older CLD patients appeared to have lower antibody responses. These data might be helpful to inform vaccine decisions for patients with chronic liver disease.


Asunto(s)
COVID-19 , Hepatopatías , Humanos , Formación de Anticuerpos , COVID-19/prevención & control , Vacunas contra la COVID-19 , Estudios Prospectivos , SARS-CoV-2 , Vacunación
9.
Adv Mater ; 35(32): e2302927, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37178458

RESUMEN

Semi-transparent organic solar cells (ST-OSCs) have great potential for application in vehicle- or building-integrated solar energy harvesting. Ultrathin active layers and electrodes are typically utilized to guarantee high power conversion efficiency (PCE) and high average visible transmittance (AVT) simultaneously; however, such ultrathin parts are unsuitable for industrial high-throughput manufacturing. In this study, ST-OSCs are fabricated using a longitudinal through-hole architecture to achieve functional region division and to eliminate the dependence on ultrathin films. A complete circuit that vertically corresponds to the silver grid is responsible for obtaining high PCE, and the longitudinal through-holes embedded in it allow most of the light to pass through,where the overall transparency is associated with the through-hole specification rather than the thicknesses of active layer and electrode. Excellent photovoltaic performance over a wide range of transparency (9.80-60.03%), with PCEs ranging from 6.04% to 15.34% is achieved. More critically, this architecture allows printable 300-nm-thick devices to achieve a record-breaking light utilization efficiency (LUE) of 3.25%, and enables flexible ST-OSCs to exhibit better flexural endurance by dispersing the extrusion stress into the through-holes. This study paves the way for fabricating high-performance ST-OSCs and shows great promise for the commercialization of organic photovoltaics.

10.
Microbiol Resour Announc ; 12(3): e0093622, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36779729

RESUMEN

Here, we report the draft genome sequence of Bacillus cereus strain THSB-6-2, which was isolated from cyanobacterial blooms in Lake Taihu, China. The 5,496,658-bp genome assembly of Bacillus cereus consists of 28 contigs, with a GC content of 35% and with 5,587 protein-coding sequences and 58 RNA genes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA