Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.229
Filtrar
1.
Commun Biol ; 7(1): 867, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014102

RESUMEN

The function of proteins depends on their correct structure and proper dynamics. Understanding the dynamics of target proteins facilitates drug design and development. However, dynamic information is often hidden in the spatial structure of proteins. It is important but difficult to identify the specific residues that play a decisive role in protein dynamics. Here, we report that a critical glycine residue (Gly463) dominates the motion of threonyl-tRNA synthetase (ThrRS) and the sensitivity of the enzyme to antibiotics. Obafluorin (OB), a natural antibiotic, is a novel covalent inhibitor of ThrRS. The binding of OB induces a large conformational change in ThrRS. Through five crystal structures, biochemical and biophysical analyses, and computational simulations, we found that Gly463 plays an important role in the dynamics of ThrRS. Mutating this flexible residue into more rigid residues did not damage the enzyme's three-dimensional structure but significantly improved the thermal stability of the enzyme and suppressed its ability to change conformation. These mutations cause resistance of ThrRS to antibiotics that are conformationally selective, such as OB and borrelidin. This work not only elucidates the molecular mechanism of the self-resistance of OB-producing Pseudomonas fluorescens but also emphasizes the importance of backbone kinetics for aminoacyl-tRNA synthetase-targeting drug development.


Asunto(s)
Glicina , Treonina-ARNt Ligasa , Treonina-ARNt Ligasa/metabolismo , Treonina-ARNt Ligasa/química , Treonina-ARNt Ligasa/genética , Treonina-ARNt Ligasa/antagonistas & inhibidores , Glicina/química , Glicina/farmacología , Glicina/metabolismo , Conformación Proteica , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Mutación , Pseudomonas fluorescens/enzimología
2.
Heliyon ; 10(12): e33219, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39022007

RESUMEN

Background: Breast cancer is the most widespread malignant tumor worldwide. Single-cell sequencing technology offers novel insights and methods to understand the onset, progression, and treatment of tumors. Nevertheless, there is currently an absence of a thorough and unbiased report on the comprehensive research status of single-cell sequencing in breast cancer. This study seeks to summarize and quantify the dynamics and trends of research on breast cancer single-cell sequencing by bibliometric analysis. Methods: Research articles and reviews related to breast cancer single-cell sequencing were selected from the WoSCC database. Visualization of data regarding countries, institutions, authors, references, and keywords was performed by CiteSpace and VOSviewer software. Results: 583 articles and reviews were analyzed in this study. The quantity of publications related to breast cancer single-cell sequencing has been increasing annually. These studies originate from 302 institutions in 46 countries, with YMAX S WICHA producing the most publications and WANG Y being the most cited author. Nature Communications is the most researched journal, while Nature holds the highest number of citations. These journals predominantly cover topics in the molecular/biological/immunological fields. Moreover, an analysis of reference and keyword bursts revealed that current research trends in this area are primarily centered on "clonal evolution," "tumor microenvironment," and "immunotherapy." Conclusion: Breast cancer single-cell sequencing is a rapidly growing area of scientific interest. Future research requires more frequent and in-depth collaborations among countries, institutions, and authors. Furthermore, "clonal evolution," "tumor microenvironment," and "immunotherapy" are likely to become major focal points in upcoming research on breast cancer single-cell sequencing.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39027975

RESUMEN

ABSTRACT: Angiomotin-like 2 (AMOTL2) is related to numerous physiological and pathological conditions by affecting signal transduction. However, whether AMOTL2 is linked to pulmonary arterial hypertension (PAH) has not been addressed. This work aimed to investigate the potential role of AMOTL2 in PAH. A decrease in AMOTL2 abundance was observed in the lungs of PAH rats. The upregulation of AMOTL2 significantly decreased right ventricle systolic pressure and right ventricular hypertrophy in PAH rats. Overexpression of AMOTL2 also led to a noteworthy decrease in vascular wall thickness, pulmonary artery area, and collagen deposition in rats with PAH. AMOTL2 was downregulated in hypoxia-stimulated pulmonary arterial smooth muscle cells (PASMCs). Moreover, AMOTL2 overexpression impeded hypoxia-evoked proliferation, migration and phenotypic transformation in rat PASMCs. Mechanistic investigation revealed that Yes-associated protein 1 (YAP1) activation in PAH rats or hypoxia-stimulated PASMCs was markedly inhibited by AMOTL2 overexpression, which was associated with increased large tumor suppressor 1/2 (LATS1/2) phosphorylation. The inhibition of LATS1/2 reversed the AMOTL2-mediated inactivation of YAP1. Restoring the activity of YAP1 reversed the inhibitory effect of AMOTL2 on hypoxia-evoked proliferation, migration and phenotypic transformation of PASMCs. Collectively, these results suggest that AMOTL2 can ameliorate PAH in a rat model by interfering with pulmonary arterial remodeling via the inactivation of YAP1 signaling. Our work indicates that AMOTL2 may be a candidate target for novel drug development for the treatment of PAH.

4.
Adv Healthc Mater ; : e2401599, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38973653

RESUMEN

Nitric oxide (NO) is a crucial gaseous signaling molecules in regulating cardiovascular, immune, and nervous systems. Controlled and targeted NO delivery is imperative for treating cancer, inflammation, and cardiovascular diseases. Despite various enzyme-prodrug therapy (EPT) systems facilitating controlled NO release, their clinical utility is hindered by nonspecific NO release and undesired metabolic consequence. In this study, a novel EPT system is presented utilizing a cellobioside-diazeniumdiolate (Cel2-NO) prodrug, activated by an endocellulase (Cel5A-h38) derived from the rumen uncultured bacterium of Hu sheep. This system demonstrates nearly complete orthogonality, wherein Cel2-NO prodrug maintains excellent stability under endogenous enzymes. Importantly, Cel5A-h38 efficiently processes the prodrug without recognizing endogenous glycosides. The targeted drug release capability of the system is vividly illustrated through an in vivo near-infrared imaging assay. The precise NO release by this EPT system exhibits significant therapeutic potential in a mouse hindlimb ischemia model, showcasing reductions in ischemic damage, ambulatory impairment, and modulation of inflammatory responses. Concurrently, the system enhances tissue repair and promotes function recovery efficacy. The novel EPT system holds broad applicability for the controlled and targeted delivery of essential drug molecules, providing a potent tool for treating cardiovascular diseases, tumors, and inflammation-related disorders.

5.
Commun Biol ; 7(1): 876, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39020071

RESUMEN

Bioengineering and regenerative medicine strategies are promising for the treatment of vascular diseases. However, current limitations inhibit the ability of these approaches to be translated to clinical practice. Here we summarize some of the big bottlenecks that inhibit vascular regeneration in the disease applications of aortic aneurysms, stroke, and peripheral artery disease. We also describe the bottlenecks preventing three-dimensional bioprinting of vascular networks for tissue engineering applications. Finally, we describe emerging technologies and opportunities to overcome these challenges to advance vascular regeneration.


Asunto(s)
Regeneración , Medicina Regenerativa , Ingeniería de Tejidos , Humanos , Ingeniería de Tejidos/métodos , Medicina Regenerativa/métodos , Animales , Enfermedades Vasculares/terapia , Enfermedades Vasculares/fisiopatología , Bioimpresión/métodos , Vasos Sanguíneos/fisiología , Impresión Tridimensional
6.
Sci Total Environ ; : 174975, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39053550

RESUMEN

Nitrogen oxides (NOx) emissions can cause air pollution that is harmful to human health, even producing serious ecological problems. Whether it is diluted in the air or not, the management and valorization of NOx from industrial emissions have been constrained by technology and finance. This study shows that red soil can be used as a photocatalyst to convert NOx into soil nitrate nitrogen (NO3--N) in the soil. The addition of zinc oxide (ZnO) and titanium dioxide (TiO2) onto the soil surface improves the photocatalytic precipitation efficiency of 1 ppm NO, approaching a removal efficiency of 77 % under ultraviolet (UV) light. The efficiency of red soil in precipitating NOx through adsorption exceeded that of photocatalysis at 100 ppm NOx (e.g. 16.02 % versus 7.70 % in 0.1-mm soil). Pot experiment reveals that the precipitated NO3--N promoted biomass of water spinach (Ipomoea aquatica Forsk). Additionally, adding ZnO or TiO2 also affects mineral nutrition. This demonstration of converting air pollutants into available nitrogen (N) for plant growth not only provides a new perspective on treatment and valorization for NOx but also sheds light on the transport of N in the air-soil-plant path.

7.
World J Diabetes ; 15(6): 1340-1352, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38983805

RESUMEN

BACKGROUND: The mechanism of improvement of type 2 diabetes after duodenal-jejunal bypass (DJB) surgery is not clear. AIM: To study the morphological and functional changes in adipose tissue after DJB and explore the potential mechanisms contributing to postoperative insulin sensitivity improvement of adipose tissue in a diabetic male rat model. METHODS: DJB and sham surgery was performed in a-high-fat-diet/streptozotocin-induced diabetic rat model. All adipose tissue was weighed and observed under microscope. Use inguinal fat to represent subcutaneous adipose tissue (SAT) and mesangial fat to represent visceral adipose tissue. RNA-sequencing was utilized to evaluate gene expression alterations adipocytes. The hematoxylin and eosin staining, reverse transcription-quantitative polymerase chain reaction, western blot, and enzyme-linked immunosorbent assay were used to study the changes. Insulin resistance was evaluated by immunofluorescence. RESULTS: After DJB, whole body blood glucose metabolism and insulin sensitivity in adipose tissue improved. Fat cell volume in both visceral adipose tissue (VAT) and SAT increased. Compared to SAT, VAT showed more significantly functional alterations after DJB and KEGG analysis indicated growth hormone (GH) pathway and downstream adiponectin secretion were involved in metabolic regulation. The circulating GH and adiponectin levels and GH receptor and adiponectin levels in VAT increased. Cytological experiment showed that GH stimulated adiponectin secretion and improve insulin sensitivity. CONCLUSION: GH improves insulin resistance in VAT in male diabetic rats after receiving DJB, possibly by increasing adiponectin secretion.

9.
Mater Horiz ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39022827

RESUMEN

The development of wearable electronics has driven the need for smart fibers with advanced multifunctional synergy. In this paper, we present a design of a multifunctional coaxial fiber that is composed of a biopolymer-derived core and an MXene/silver nanowire (AgNW) sheath by wet spinning. The fiber synergistically integrates moisture actuation, length tracing, humidity sensing, and electric heating, making it highly promising for portable devices and protective systems. The biopolymer-derived core provides deformation for moisture-sensitive actuation, while the MXene/AgNW sheath with good conductivity enables the fiber to perform electric heating, humidity sensing, and self-sensing actuation. The coaxial fiber can be programmed to rapidly desorb water molecules to shrink to its original length by using the MXene/AgNW sheath as an electrical heater. We demonstrate proof-of-concept applications based on the multifunctional fibers for thermal physiotherapy and wound healing/monitoring. The sodium alginate@MXene-based coaxial fiber presents a promising solution for the next-generation of smart wearable electronics.

10.
Immun Inflamm Dis ; 12(7): e1338, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38990142

RESUMEN

BACKGROUND: Human immunodeficiency virus (HIV) infection is an important risk factor for Coronavirus Disease 2019 (COVID-19), but data on the prevalence of COVID-19 among people living with HIV (PLWH) is limited in low-income countries. Our aim was to assess the seroprevalence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) specific antibodies and associated factors among PLWH in Sierra Leone. METHODS: We conducted a cross-sectional survey of PLWH aged 18 years or older in Sierra Leone between August 2022 and January 2023. Participants were tested for SARS-CoV-2 antibodies using a rapid SARS-CoV-2 antibody (immunoglobulin M/immunoglobulin G [IgG]) kits. Stepwise logistic regression was used to explore factors associated with SARS-CoV-2 antibody seroprevalence with a significance level of p < .05. RESULTS: In our study, 33.4% (1031/3085) participants had received a COVID-19 vaccine, and 75.7% were SARS-CoV-2 IgG positive. Higher IgG seroprevalence was observed in females (77.2% vs. 71.4%, p = .001), adults over 60 years (88.2%), those with suppressed HIV RNA (80.7% vs. 51.7%, p < .001), antiretroviral therapy (ART)-experienced individuals (77.9% vs. 44.6%, p < .001), and vaccinated participants (80.7% vs. 73.2%, p < .001). Patients 60 years or older had the highest odds of IgG seroprevalence (adjusted odds ratio [aOR] = 2.73, 95% CI = 1.68-4.65). Female sex (aOR = 1.28, 95%CI = 1.05-1.56), COVID-19 vaccination (aOR = 1.54, 95% CI = 1.27-1.86), and ART (aOR = 2.20, 95% CI = 1.56-3.11) increased the odds, whereas HIV RNA ≥ 1000 copies/mL (aOR = 0.32, 95% CI = 0.26-0.40) reduced the odds of IgG seroprevalence. CONCLUSIONS: We observed a high seroprevalence of SARS-CoV-2 antibody among PLWH in Sierra Leone. We recommend the introduction of targeted vaccination for PLWH with a high risk of severe COVID-19, especially those with an unsuppressed HIV viral load.


Asunto(s)
Anticuerpos Antivirales , COVID-19 , Infecciones por VIH , Inmunoglobulina G , SARS-CoV-2 , Humanos , Masculino , Femenino , COVID-19/epidemiología , COVID-19/inmunología , COVID-19/sangre , Sierra Leona/epidemiología , Estudios Seroepidemiológicos , Adulto , Infecciones por VIH/epidemiología , Infecciones por VIH/inmunología , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , Persona de Mediana Edad , SARS-CoV-2/inmunología , Estudios Transversales , Anticuerpos Antivirales/sangre , Inmunoglobulina G/sangre , Adulto Joven , Factores de Riesgo , Adolescente , Anciano , Vacunas contra la COVID-19/inmunología
12.
J Asian Nat Prod Res ; : 1-7, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38975972

RESUMEN

A chemical investigation on the roots of Aconitum nagarum afforded two undescribed C19-diterpenoid alkaloids nagarumines D and E (1 and 2). The structures of the new compounds were elucidated by spectral methods such as 1D and 2D (1H-1H COSY, HMQC, and HMBC) NMR spectroscopy, as well as HR-ESI-MS. The two isolated alkaloids were tested in vitro for cytotoxic activity against five gastric tumor cell lines. Consequently, compound 2 exhibited some cytotoxicities against several human cancer cell lines with IC50 value less than 20.0 µM.

13.
Amino Acids ; 56(1): 44, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38960916

RESUMEN

Carnosine's protective effect in rodent models of glycoxidative stress have provided a rational for translation of these findings in therapeutic concepts in patient with diabetic kidney disease. In contrast to rodents however, carnosine is rapidly degraded by the carnosinase-1 enzyme. To overcome this hurdle, we sought to protect hydrolysis of carnosine by conjugation to Methoxypolyethylene glycol amine (mPEG-NH2). PEGylated carnosine (PEG-car) was used to study the hydrolysis of carnosine by human serum as well as to compare the pharmacokinetics of PEG-car and L-carnosine in mice after intravenous (IV) injection. While L-carnosine was rapidly hydrolyzed in human serum, PEG-car was highly resistant to hydrolysis. Addition of unconjugated PEG to carnosine or PEG-car did not influence hydrolysis of carnosine in serum. In mice PEG-car and L-carnosine exhibited similar pharmacokinetics in serum but differed in half-life time (t1/2) in kidney, with PEG-car showing a significantly higher t1/2 compared to L-carnosine. Hence, PEGylation of carnosine is an effective approach to prevent carnosine degradations and to achieve higher renal carnosine levels. However, further studies are warranted to test if the protective properties of carnosine are preserved after PEGylation.


Asunto(s)
Carnosina , Dipeptidasas , Riñón , Polietilenglicoles , Carnosina/metabolismo , Animales , Polietilenglicoles/química , Hidrólisis , Dipeptidasas/metabolismo , Ratones , Humanos , Riñón/metabolismo , Masculino
14.
Small ; : e2402402, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949051

RESUMEN

Doping transition metal oxide spinels with metal ions represents a significant strategy for optimizing the electronic structure of electrocatalysts. Herein, a bimetallic Fe and Ru doping strategy to fine-tune the crystal structure of CoV2O4 spinel for highly enhanced oxygen evolution reaction (OER) is presented performance. The incorporation of Fe and Ru is observed at octahedral sites within the CoV2O4 structure, effectively modulating the electronic configuration of Co. Density functional theory calculations have confirmed that Fe acts as a novel reactive site, replacing V. Additionally, the synergistic effect of Fe, Co, and Ru effectively optimizes the Gibbs free energy of the intermediate species, reduces the reaction energy barrier, and accelerates the kinetics toward OER. As expected, the best-performing CoVFe0.5Ru0.5O4 displays a low overpotential of 240 mV (@10 mA cm-2) and a remarkably low Tafel slope of 38.9 mV dec-1, surpassing that of commercial RuO2. Moreover, it demonstrates outstanding long-term durability lasting for 72 h. This study provides valuable insights for the design of highly active polymetallic spinel electrocatalysts for energy conversion applications.

15.
Hum Pathol ; 151: 105629, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39029533

RESUMEN

Recurrence within one or two years is common after Crohn's disease (CD) resection. In this study, we seek to identify histologic features in CD resections that may predict earlier (≤18 months) recurrence to potentially guide post-operative management. A single-institution, retrospective review was performed on patients with first-time CD bowel resection specimens (2002-2007). Patient demographics and CD course were also documented. Slides were reviewed for inflammatory distribution and composition, small bowel (SB) pyloric metaplasia (PM), and presence and characteristics of submucosal fibrosis and granulomas. In our cohort, 14 of 41 patients experienced earlier clinical or endoscopic recurrence after initial resection. In the 38 patients who underwent SB resection (3 were colon only), PM was less common in those with earlier recurrence (6/12 [50%]) compared to those with later (>18 months) or no known recurrence (22/26 [85%]) (P = 0.045). PM was present even in patients with <1 year of known CD. Additionally, therapy with anti-tumor necrosis factor (TNF) prior to surgery was more common in earlier recurrence patients (7/14 [50%]) than later or no recurrence patients (4/27 [15%]) (P = 0.026). There was no significant difference in age, sex, smoking status, duration of CD, post-operative CD medication, distribution or features of inflammation, granulomas, or fibrosis. Overall, our results indicate that SB PM and pre-surgical anti-TNF therapy are possible helpful clinicopathologic features to evaluate for recurrence risk.

16.
IEEE Trans Med Imaging ; PP2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990752

RESUMEN

Surgical instrument segmentation is fundamentally important for facilitating cognitive intelligence in robot-assisted surgery. Although existing methods have achieved accurate instrument segmentation results, they simultaneously generate segmentation masks of all instruments, which lack the capability to specify a target object and allow an interactive experience. This paper focuses on a novel and essential task in robotic surgery, i.e., Referring Surgical Video Instrument Segmentation (RSVIS), which aims to automatically identify and segment the target surgical instruments from each video frame, referred by a given language expression. This interactive feature offers enhanced user engagement and customized experiences, greatly benefiting the development of the next generation of surgical education systems. To achieve this, this paper constructs two surgery video datasets to promote the RSVIS research. Then, we devise a novel Video-Instrument Synergistic Network (VIS-Net) to learn both video-level and instrument-level knowledge to boost performance, while previous work only utilized video-level information. Meanwhile, we design a Graph-based Relation-aware Module (GRM) to model the correlation between multi-modal information (i.e., textual description and video frame) to facilitate the extraction of instrument-level information. Extensive experimental results on two RSVIS datasets exhibit that the VIS-Net can significantly outperform existing state-of-the-art referring segmentation methods. We will release our code and dataset for future research (Git).

17.
Artículo en Inglés | MEDLINE | ID: mdl-38995073

RESUMEN

BACKGROUND: Gut microbiota imbalance and sarcopenia are frequently observed in the elderly population. Gut Microbiota and their metabolites are considered risk factors contributing to the heightened risk of sarcopenia, but whether these associations are causal remains unclear. METHODS: We conducted linkage disequilibrium score regression and two-sample Mendelian randomization methods with SNPs sourced from large-scale genome-wide association studies as instrumental variables to examine the causal associations linking gut microbiota with their metabolites to the sarcopenia. Following the MR analysis, subsequent sensitivity analyses were conducted to reinforce the robustness and credibility of the obtained results. RESULTS: MR analysis yielded compelling evidence demonstrating the correlation between genetically predicted gut microbiota and metabolites and the risk of sarcopenia. The abundance of Porphyromonadaceae, Rikenellaceae, Terrisporobacter, and Victivallis was found to be associated with WP. Our study also found suggestive associations of 12 intestinal bacteria with ALM, and of Streptococcaceae, Intestinibacter, Paraprevotella, Ruminococcaceae UCG009, and Sutterella with GS. Specifically, we identified 21 gut microbiota-derived metabolites that may be associated with the risk of sarcopenia. CONCLUSIONS: Utilizing a two-sample MR approach, our study elucidates the causal interplay among gut microbiota, gut microbiota-derived metabolites, and the occurrence of sarcopenia. These findings suggest that gut microbiota and metabolites may represent a potential underlying risk factor for sarcopenia, and offer the promise of novel therapeutic focal points.

18.
Nano Lett ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012768

RESUMEN

Fibers of liquid crystal elastomers (LCEs) as promising artificial muscle show ultralarge and reversible contractile strokes. However, the contractile force is limited by the poor mechanical properties of the LCE fibers. Herein, we report high-strength LCE fibers by introducing a secondary network into the single-network LCE. The double-network LCE (DNLCE) shows considerable improvements in tensile strength (313.9%) and maximum actuation stress (342.8%) compared to pristine LCE. To facilitate the controllability and application, a coiled artificial muscle fiber consisting of DNLCE-coated carbon nanotube (CNT) fiber is prepared. When electrothermally driven, the artificial muscle fiber outputs a high actuation performance and programmable actuation. Furthermore, by knitting the artificial muscle fibers into origami structures, an intelligent gripper and crawling inchworm robot have been demonstrated. These demonstrations provide promising application scenarios for advanced intelligent systems in the future.

19.
Nat Commun ; 15(1): 5874, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997284

RESUMEN

Mucus injury associated with goblet cell (GC) depletion constitutes an early event in inflammatory bowel disease (IBD). Using single-cell sequencing to detect critical events in mucus dysfunction, we discover that the Kazal-type serine protease inhibitor SPINK4 is dynamically regulated in colitic intestine in parallel with disease activities. Under chemically induced colitic conditions, the grim status in Spink4-conditional knockout mice is successfully rescued by recombinant murine SPINK4. Notably, its therapeutic potential is synergistic with existing TNF-α inhibitor infliximab in colitis treatment. Mechanistically, SPINK4 promotes GC differentiation using a Kazal-like motif to modulate EGFR-Wnt/ß-catenin and -Hippo pathways. Microbiota-derived diacylated lipoprotein Pam2CSK4 triggers SPINK4 production. We also show that monitoring SPINK4 in circulation is a reliable noninvasive technique to distinguish IBD patients from healthy controls and assess disease activity. Thus, SPINK4 serves as a serologic biomarker of IBD and has therapeutic potential for colitis via intrinsic EGFR activation in intestinal homeostasis.


Asunto(s)
Colitis , Ratones Noqueados , Animales , Colitis/genética , Colitis/inducido químicamente , Colitis/patología , Colitis/tratamiento farmacológico , Colitis/metabolismo , Humanos , Ratones , Células Caliciformes/metabolismo , Células Caliciformes/patología , Células Caliciformes/efectos de los fármacos , Receptores ErbB/metabolismo , Receptores ErbB/genética , Receptores ErbB/antagonistas & inhibidores , Ratones Endogámicos C57BL , Inhibidores de Serinpeptidasas Tipo Kazal/genética , Inhibidores de Serinpeptidasas Tipo Kazal/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , Masculino , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/metabolismo , Femenino , Modelos Animales de Enfermedad , Biomarcadores/sangre , Biomarcadores/metabolismo , Diferenciación Celular
20.
Materials (Basel) ; 17(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38998252

RESUMEN

The fiber-reinforced composite stringer is commonly used in large civil aircraft wing structures. Under compression loads, it exhibits complex failure modes, with matrix cracking being one of the most common. The quantitative analysis of matrix failure is important and difficult. To address this issue, a multiscale method combining the generalized method of cells (GMC) and macroscopic FEM models is employed to quantitatively predict matrix damage and failure. The extent of matrix damage in the composite structure is represented by the number of failed matrix subcells within the repeating unit cells. The 3D Tsai-Hill failure criterion is established for the matrix phase, and the maximum stress failure criterion is applied to the fiber subcell. Upon meeting the criterion, the stiffnesses of the failed subcells are immediately reduced to a nominal value. In the current study, the ultimate loads, failure modes and load-displacement curves of composite stringers subjected to compressive load are obtained by the experiment approach and the proposed multiscale model. The experimental and simulation results show good agreement, and the multiscale analysis method successfully predicts the extent of matrix damage in the composite stringer under compressive load. The number of failed matrix subcells quantitatively evaluates the damage extent within a 2 × 2 GMC model. The findings reveal that matrix subcell failures primarily occur in the 45° and -45° plies of the middle part of the stringer composite.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...