Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ying Yong Sheng Tai Xue Bao ; 32(1): 82-92, 2021 Jan.
Artículo en Chino | MEDLINE | ID: mdl-33477216

RESUMEN

We conducted a pot experiment to investigate the effects of planting broadleaf tree species (i.e., Cinnamomum camphora, Schima superba, and Quercus glauca) and Moso bamboo (Phyllostachys edulis) on soil carbon mineralization and microbial community structure. The rates of soil carbon mineralization were measured via alkali trapping method. The structural and functional diversity of soil bacterial and fungal communities were analyzed by terminal restriction fragment length polymorphism (T-RFLP) and real-time quantitative PCR techniques. The soil planted with Moso bamboo exhibited a significantly higher carbon mineralization rate and labile carbon content than those in the soils planted with broadleaf tree species. The underground biomass of Moso bamboo was higher than that of broadleaf tree species. The soil bacterial communities were more sensitive than fungal communities to the planting of different plant species . Moreover, soil fungal diversity of Moso bamboo was distinctly different from that of broadleaf tree species. Compared to the diversity of soil bacterial communities, the diversity of soil fungal communities was more closely related with soil pH, organic carbon content, and carbon mineralization. In comparison to the broadleaf tree species, the Moso bamboo planting could substantially increase soil organic carbon minera-lization, which was affected mainly by the soil fungal community structure.


Asunto(s)
Microbiota , Suelo , Carbono , Bosques , Poaceae , Microbiología del Suelo , Árboles
2.
Ying Yong Sheng Tai Xue Bao ; 31(8): 2749-2758, 2020 Aug.
Artículo en Chino | MEDLINE | ID: mdl-34494798

RESUMEN

We investigated the effects of tea plantation age on soil microbial community structure and diversity with surface and subsurface soil samples (0-20 and 20-40 cm) from tea plantation at different ages (0, 20, 25, 38 and 48 years). We analyzed soil bacterial and fungal communities by terminal restriction fragment length polymorphism (T-RFLP) and real-time quantitative PCR techniques. The results showed that soil physicochemical properties changed significantly after planting tea. The contents of soil organic carbon, available nitrogen, and available phosphorus increased at first, and gradually decreased with the increases of tea plantation age. The contents of organic carbon and total nitrogen in the topsoil were significantly higher than those in the subsoil. Moreover, soil bacterial community composition varied across tea plantation age. Bacterial diversity index decreased with increasing tea plantation age. The composition and diversity of soil fungal communities did not show a clear relationship with the tea plantation age. Overall, soil bacterial communities was more sensitive to the tea plantation age than fungal communities. With the increases of tea plantation age, the ratio of soil fungi to bacteria showed increasing trend. Soil microbial community in the tea plantation changed from a "bacterial type" with low fungi/bacteria ratio (F/B) to a "fungal type" with high F/B.


Asunto(s)
Microbiota , Suelo , Carbono/análisis , Nitrógeno/análisis , Microbiología del Suelo ,
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...