Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neural Eng ; 19(4)2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35785769

RESUMEN

Objective. Accurate identification of functional cortical regions is essential in neurological resection. The central sulcus (CS) is an important landmark that delineates functional cortical regions. Median nerve stimulation (MNS) is a standard procedure to identify the position of the CS intraoperatively. In this paper, we introduce an automated procedure that uses MNS to rapidly localize the CS and create functional somatotopic maps.Approach. We recorded electrocorticographic signals from 13 patients who underwent MNS in the course of an awake craniotomy. We analyzed these signals to develop an automated procedure that determines the location of the CS and that also produces functional somatotopic maps.Main results. The comparison between our automated method and visual inspection performed by the neurosurgeon shows that our procedure has a high sensitivity (89%) in identifying the CS. Further, we found substantial concordance between the functional somatotopic maps generated by our method and passive functional mapping (92% sensitivity).Significance. Our automated MNS-based method can rapidly localize the CS and create functional somatotopic maps without imposing additional burden on the clinical procedure. With additional development and validation, our method may lead to a diagnostic tool that guides neurosurgeons and reduces postoperative morbidity in patients undergoing resective brain surgery.


Asunto(s)
Mapeo Encefálico , Nervio Mediano , Mapeo Encefálico/métodos , Corteza Cerebral , Craneotomía , Electrocorticografía/métodos , Humanos
2.
Front Neurosci ; 16: 818214, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35368269

RESUMEN

As a minimally invasive recording technique, stereo-electroencephalography (SEEG) measures intracranial signals directly by inserting depth electrodes shafts into the human brain, and thus can capture neural activities in both cortical layers and subcortical structures. Despite gradually increasing SEEG-based brain-computer interface (BCI) studies, the features utilized were usually confined to the amplitude of the event-related potential (ERP) or band power, and the decoding capabilities of other time-frequency and time-domain features have not been demonstrated for SEEG recordings yet. In this study, we aimed to verify the validity of time-domain and time-frequency features of SEEG, where classification performances served as evaluating indicators. To do this, using SEEG signals under intermittent auditory stimuli, we extracted features including the average amplitude, root mean square, slope of linear regression, and line-length from the ERP trace and three traces of band power activities (high-gamma, beta, and alpha). These features were used to detect the active state (including activations to two types of names) against the idle state. Results suggested that valid time-domain and time-frequency features distributed across multiple regions, including the temporal lobe, parietal lobe, and deeper structures such as the insula. Among all feature types, the average amplitude, root mean square, and line-length extracted from high-gamma (60-140 Hz) power and the line-length extracted from ERP were the most informative. Using a hidden Markov model (HMM), we could precisely detect the onset and the end of the active state with a sensitivity of 95.7 ± 1.3% and a precision of 91.7 ± 1.6%. The valid features derived from high-gamma power and ERP in this work provided new insights into the feature selection procedure for further SEEG-based BCI applications.

3.
J Neural Eng ; 19(2)2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35441594

RESUMEN

Objective. Revealing the relationship between simultaneous scalp electroencephalography (EEG) and intracranial electroencephalography (iEEG) is of great importance for both neuroscientific research and translational applications. However, whether prominent iEEG features in the high-gamma band can be reflected by scalp EEG is largely unknown. To address this, we investigated the phase-amplitude coupling (PAC) phenomenon between the low-frequency band of scalp EEG and the high-gamma band of iEEG.Approach. We analyzed a simultaneous iEEG and scalp EEG dataset acquired under a verbal working memory paradigm from nine epilepsy subjects. The PAC values between pairs of scalp EEG channel and identified iEEG channel were explored. After identifying the frequency combinations and electrode locations that generated the most significant PAC values, we compared the PAC values of different task periods (encoding, maintenance, and retrieval) and memory loads.Main results. We demonstrated that the amplitude of high-gamma activities in the entorhinal cortex, hippocampus, and amygdala was correlated to the delta or theta phase at scalp locations such as Cz and Pz. In particular, the frequency bin that generated the maximum PAC value centered at 3.16-3.84 Hz for the phase and 50-85 Hz for the amplitude. Moreover, our results showed that PAC values for the retrieval period were significantly higher than those of the encoding and maintenance periods, and the PAC was also influenced by the memory load.Significance. This is the first human simultaneous iEEG and scalp EEG study demonstrating that the amplitude of iEEG high-gamma components is associated with the phase of low-frequency components in scalp EEG. These findings enhance our understanding of multiscale neural interactions during working memory, and meanwhile, provide a new perspective to estimate intracranial high-frequency features with non-invasive neural recordings.


Asunto(s)
Electrocorticografía , Epilepsia , Electrocorticografía/métodos , Electroencefalografía/métodos , Epilepsia/diagnóstico , Humanos , Memoria a Corto Plazo , Cuero Cabelludo
4.
Front Neurosci ; 15: 653965, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34017235

RESUMEN

Name recognition plays important role in self-related cognitive processes and also contributes to a variety of clinical applications, such as autism spectrum disorder diagnosis and consciousness disorder analysis. However, most previous name-related studies usually adopted noninvasive EEG or fMRI recordings, which were limited by low spatial resolution and temporal resolution, respectively, and thus millisecond-level response latencies in precise brain regions could not be measured using these noninvasive recordings. By invasive stereo-electroencephalography (SEEG) recordings that have high resolution in both the spatial and temporal domain, the current study distinguished the neural response to one's own name or a stranger's name, and explored common active brain regions in both auditory and visual modalities. The neural activities were classified using spatiotemporal features of high-gamma, beta, and alpha band. Results showed that different names could be decoded using multi-region SEEG signals, and the best classification performance was achieved at high gamma (60-145 Hz) band. In this case, auditory and visual modality-based name classification accuracies were 84.5 ± 8.3 and 79.9 ± 4.6%, respectively. Additionally, some single regions such as the supramarginal gyrus, middle temporal gyrus, and insula could also achieve remarkable accuracies for both modalities, supporting their roles in the processing of self-related information. The average latency of the difference between the two responses in these precise regions was 354 ± 63 and 285 ± 59 ms in the auditory and visual modality, respectively. This study suggested that name recognition was attributed to a distributed brain network, and the subsets with decoding capabilities might be potential implanted regions for awareness detection and cognition evaluation.

5.
Adv Sci (Weinh) ; 6(9): 1801617, 2019 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-31065516

RESUMEN

Flexible electronics can serve as powerful tools for biomedical diagnosis and therapies of neurological disorders, particularly for application cases with brain-machine interfaces (BMIs). Existing conformal soft bioelectrodes are applicable for basic electrocorticogram (ECoG) collecting/monitoring. Nevertheless, as an emerging and promising approach, further multidisciplinary efforts are still demanded for in-depth exploitations with these conformal soft electronics toward their practical neurophysiological applications in both scientific research and real-world clinical operation. Here, clinically-friendly silk-supported/delivered soft bioelectronics are developed, and multiple functions and features valuable for customizable intracranial applications (e.g., biocompatible and spontaneously conformal coupling with cortical surface, spatiotemporal ECoG detecting/monitoring, electro-neurophysiological neural stimulating/decoding, controllable loading/delivery of therapeutic molecules, and parallel optical readouts of operating states) are integrated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA