Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.547
Filtrar
1.
PLoS One ; 19(7): e0306752, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38968285

RESUMEN

PURPOSE: To analyze the causal relationship between 486 human serum metabolites and the active tuberculosis (ATB) in European population. METHODS: In this study, the causal relationship between human serum metabolites and the ATB was analyzed by integrating the genome-wide association study (GWAS). The 486 human serum metabolites were used as the exposure variable, three different ATB GWAS databases in the European population were set as outcome variables, and single nucleotide polymorphisms were used as instrumental variables for Mendelian Randomization. The inverse variance weighting was estimated causality, the MR-Egger intercept to estimate horizontal pleiotropy, and the combined effects of metabolites were also considered in the meta-analysis. Furthermore, the web-based MetaboAnalyst 6.0 was engaged for enrichment pathway analysis, while R (version 4.3.2) software and Review Manager 5.3 were employed for statistical analysis. RESULTS: A total of 21, 17, and 19 metabolites strongly associated with ATB were found in the three databases after preliminary screening (P < 0.05). The intersecting metabolites across these databases included tryptophan, betaine, 1-linoleoylglycerol (1-monolinolein) (1-LG), 1-eicosatrienoylglycerophosphocholine, and oleoylcarnitine. Among them, betaine (I2 = 24%, P = 0.27) and 1-LG (I2 = 0%, P = 0.62) showed the lowest heterogeneity among the different ATB databases. In addition, the metabolic pathways of phosphatidylethanolamine biosynthesis (P = 0.0068), methionine metabolism (P = 0.0089), betaine metabolism (P = 0.0205) and oxidation of branched-chain fatty acids (P = 0.0309) were also associated with ATB. CONCLUSION: Betaine and 1-LG may be biomarkers or auxiliary diagnostic tools for ATB. They may provide new guidance for medical practice in the early diagnosis and surveillance of ATB. In addition, by interfering with phosphatidylethanolamine biosynthesis, methionine metabolism, betaine metabolism, oxidation of branched-chain fatty acids, and other pathways, it is helpful to develop new anti-tuberculosis drugs and explore the virulence or pathogenesis of ATB at a deeper level, providing an effective reference for future studies.


Asunto(s)
Betaína , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Tuberculosis , Humanos , Betaína/sangre , Betaína/metabolismo , Tuberculosis/genética , Tuberculosis/sangre , Tuberculosis/metabolismo , Europa (Continente) , Población Blanca/genética , Metabolómica/métodos
2.
J Multidiscip Healthc ; 17: 3109-3119, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38978829

RESUMEN

Purpose: This study aimed to investigate the knowledge, attitudes, and practice (KAP) of radiologists regarding artificial intelligence (AI) in medical imaging in the southeast of China. Methods: This cross-sectional study was conducted among radiologists in the Jiangsu, Zhejiang, and Fujian regions from October to December 2022. A self-administered questionnaire was used to collect demographic data and assess the KAP of participants towards AI in medical imaging. A structural equation model (SEM) was used to analyze the relationships between KAP. Results: The study included 452 valid questionnaires. The mean knowledge score was 9.01±4.87, the attitude score was 48.96±4.90, and 75.22% of participants actively engaged in AI-related practices. Having a master's degree or above (OR=1.877, P=0.024), 5-10 years of radiology experience (OR=3.481, P=0.010), AI diagnosis-related training (OR=2.915, P<0.001), and engaging in AI diagnosis-related research (OR=3.178, P<0.001) were associated with sufficient knowledge. Participants with a junior college degree (OR=2.139, P=0.028), 5-10 years of radiology experience (OR=2.462, P=0.047), and AI diagnosis-related training (OR=2.264, P<0.001) were associated with a positive attitude. Higher knowledge scores (OR=5.240, P<0.001), an associate senior professional title (OR=4.267, P=0.026), 5-10 years of radiology experience (OR=0.344, P=0.044), utilizing AI diagnosis (OR=3.643, P=0.001), and engaging in AI diagnosis-related research (OR=6.382, P<0.001) were associated with proactive practice. The SEM showed that knowledge had a direct effect on attitude (ß=0.481, P<0.001) and practice (ß=0.412, P<0.001), and attitude had a direct effect on practice (ß=0.135, P<0.001). Conclusion: Radiologists in southeastern China hold a favorable outlook on AI-assisted medical imaging, showing solid understanding and enthusiasm for its adoption, despite half lacking relevant training. There is a need for more AI diagnosis-related training, an efficient standardized AI database for medical imaging, and active promotion of AI-assisted imaging in clinical practice. Further research with larger sample sizes and more regions is necessary.

3.
Neural Regen Res ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38993123

RESUMEN

ABSTRACT: AAV-PHP.eB is an artificial adeno-associated virus (AAV) that crosses the blood-brain barrier and targets neurons more efficiently than other AAVs when administered systematically. While AAV-PHP.eB has been used in various disease models, its cellular tropism in cerebrovascular diseases remains unclear. In the present study, we aimed to elucidate the tropism of AAV-PHP.eB for different cell types in the brain in a mouse model of ischemic stroke and evaluate its effectiveness in mediating basic fibroblast growth factor (bFGF) gene therapy. Mice were injected intravenously with AAV-PHP.eB either 14 days prior to (pre-stroke) or 1 day following (post-stroke) transient middle cerebral artery occlusion. Notably, we observed a shift in tropism from neurons to endothelial cells with post-stroke administration of AAV-PHP.eB-mNeonGreen (mNG). This endothelial cell tropism correlated strongly with expression of the endothelial membrane receptor lymphocyte antigen 6 family member A (Ly6A). Furthermore, AAV-PHP.eB-mediated overexpression of bFGF markedly improved neurobehavioral outcomes and promoted long-term neurogenesis and angiogenesis post-ischemic stroke. Our findings underscore the significance of considering potential tropism shifts when utilizing AAV-PHP.eB-mediated gene therapy in neurological diseases and suggest a promising new strategy for bFGF gene therapy in stroke treatment.

5.
Talanta ; 278: 126537, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38996561

RESUMEN

Imaging live cells under stable culture conditions is essential to investigate cell physiological activities and proliferation. To achieve this goal, typically, a specialized incubation chamber that creates desired culture conditions needs to be incorporated into a microscopy system to perform cell monitoring. However, such imaging systems are generally large and costly, hampering their wide applications. Recent advances in the field of miniaturized microscopy systems have enabled incubator cell monitoring, providing a hospitable environment for live cells. Although these systems are more cost-effective, they are usually limited in imaging modalities and spatial temporal resolution. Here, we present a dual-mode, image-enhanced, miniaturized microscopy system (termed MiniCube) for direct monitoring of live cells inside incubators. MiniCube enables both bright field imaging and fluorescence imaging with single-cell spatial resolution and sub-second temporal resolution. Moreover, this system can also perform cell monitoring inside the incubator with tunable time scales ranging from a few seconds to days. Meanwhile, automatic cell segmentation and image enhancement are realized by the proposed data analysis pipeline of this system, and the signal-to-noise ratio (SNR) of acquired data is significantly improved using a deep learning based image denoising algorithm. Image data can be acquired with 5 times lower light exposure while maintaining comparable SNR. The versatility of this miniaturized microscopy system lends itself to various applications in biology studies, providing a practical platform and method for studying live cell dynamics within the incubator.

6.
Bioresour Technol ; : 131142, 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39043277

RESUMEN

In this study, a sustainable and environmentally friendly method was developed for the enrichment and purification of phycocyanin from Spirulina platensis. This was achieved by utilizing a temperature-sensitive polymer, Pluronic F68, in an aqueous two-phase solvent system. The phase behavior of the temperature-sensitive polymer-based biphasic system was evaluated. The extraction conditions were optimized by both sing-factor experiments and response surface methodology. Under the optimal conditions, the upper polymer-rich phase was recycled for sustainable phycocyanin extraction, resulting in a grade of 3.23 during the third extraction cycle. Pluronic F68 could be efficiently recovered and reused during the extraction process. The interaction mechanism between Pluronic F68 and phycocyanin was systematically studied using FT-IR and fluorescence analysis. This was further complemented by static and dynamic calculation of molecular motion through molecular docking and molecular dynamics simulation, indicating that hydrophobic segment of Pluronic F68 played a key role in the binding process with phycocyanin.

7.
Genome Biol ; 25(1): 193, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030605

RESUMEN

BACKGROUND: The mitosis-to-meiosis switch during spermatogenesis requires dynamic changes in gene expression. However, the regulation of meiotic transcriptional and post-transcriptional machinery during this transition remains elusive. RESULTS: We report that methyltransferase-like protein 16 (METTL16), an N6-methyladenosine (m6A) writer, is required for mitosis-to-meiosis transition during spermatogenesis. Germline conditional knockout of Mettl16 in male mice impairs spermatogonial differentiation and meiosis initiation. Mechanistically, METTL16 interacts with splicing factors to regulate the alternative splicing of meiosis-related genes such as Stag3. Ribosome profiling reveals that the translation efficiency of many meiotic genes is dysregulated in METTL16-deficient testes. m6A-sequencing shows that ablation of METTL16 causes upregulation of the m6A-enriched transcripts and downregulation of the m6A-depleted transcripts, similar to Meioc and/or Ythdc2 mutants. Further in vivo and in vitro experiments demonstrate that the methyltransferase activity site (PP185-186AA) of METTL16 is necessary for spermatogenesis. CONCLUSIONS: Our findings support a molecular model wherein the m6A writer METTL16-mediated alternative splicing and translation efficiency regulation are required to control the mitosis-to-meiosis germ cell fate decision in mice, with implications for understanding meiosis-related male fertility disorders.


Asunto(s)
Adenosina , Empalme Alternativo , Meiosis , Metiltransferasas , Espermatogénesis , Animales , Espermatogénesis/genética , Masculino , Metiltransferasas/metabolismo , Metiltransferasas/genética , Ratones , Adenosina/análogos & derivados , Adenosina/metabolismo , Biosíntesis de Proteínas , Ratones Noqueados , Mitosis , Testículo/metabolismo , Espermatogonias/metabolismo
8.
Exp Lung Res ; 50(1): 136-145, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39033404

RESUMEN

Background: Macrophages constitute the main part of infiltrating immune cells in Malignant pleural mesothelioma (MPM) and abnormally high ratios of M2 macrophages are present in both pleural effusion and tissue samples of MPM patients. Whether MPM cells affect formation of M2 macrophages is poorly understood. In this study, we focused on identification of MPM-cells-derived soluble factors with M2-promoting effects. Methods: Media of malignant pleural mesothelioma cells were collected and soluble factors affecting macrophages were analyzed by mass spectrometry. TGF-ß receptor inhibitor SB431542 was used as the entry point to explore the downstream mechanism of action by qRT-PCR, WB and immunofluorescence. Results: The serum-free culture media collected from the human MPM cells Meso1 and Meso2 significantly enhanced expression of the M2 signature molecules including IL-10, TGF-ß and CD206 in the human macrophages THP-1, while the culture medium of the human MPM cells H2452 did not show such M2-promoting effects. Analysis of proteins by mass spectrometry and ELISA suggested that Leucine rich α2 glycoprotein 1(LRG1) was a potential candidate. LRG1 time- and dose-dependently increased expression of the M2 signature molecules, confirming its M2-promoting effects. Furthermore, LRG1's M2-promoting effects were reduced by the TGF-ß receptor inhibitor SB431542, and LRG1 increased phosphorylation of Smad2, indicating that M2-promoting effects of LRG1 were via the TGF-ß receptor/Smad2 signaling pathway. Conclusions: Our results provide a potential M2-promoting new member, LRG1, which contributes to the immune escape of MPM via the TGF-ß receptor/Smad2 signaling pathway.


Asunto(s)
Macrófagos , Mesotelioma Maligno , Humanos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Mesotelioma Maligno/metabolismo , Mesotelioma Maligno/tratamiento farmacológico , Glicoproteínas/metabolismo , Glicoproteínas/farmacología , Línea Celular Tumoral , Neoplasias Pleurales/metabolismo , Neoplasias Pleurales/patología , Fenotipo , Proteína Smad2/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Interleucina-10/metabolismo , Benzamidas , Dioxoles
9.
Water Res ; 261: 122060, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-39018903

RESUMEN

Microplastics (MPs), discovered in oceans, lakes, and rivers, can infiltrate the food chain through ingestion by organisms, potentially posing health risks. Our research is the first to study the composition and distribution of MPs in Bosten Lake's sediment. In May, the average abundance of MPs was 0.95±0.72 particles per 10 gs, and in October, it was 0.90±0.61 particles per 10 gs. Bohu Town had the highest MP abundance, with 1.75±0.35 particles per 10 gs in spring and 2 ± 0 particles per 10 gs in autumn. In May, 53 % of the MPs were transparent, while in October, black MPs constituted 58 %. The predominant morphology was fibrous, accounting for 61 % of the total. MPs in the size range of 0.2-1 mm made up 91 % and 66 % of the total in May and October, respectively. The most common types of MPs in May were polyethylene terephthalate (PET) at 40 % and polyethylene (PE) at 26 %. In October, PET was the most prevalent at 71 %, followed by poly(ether-ether-ketone)(PEEK) at 11 %. Certain microbial taxa, such as Actinobacteriota, Pseudomonas, and Vicinamibacteraceae, associated with MP degradation or complex carbon chain breakdown, were notably enriched in sediment areas with high MP concentrations. A significant positive correlation was observed between the abundance of MPs in sediments and Actinobacteriota. Additionally, the abundance of Thiobacillus, Ca.competibacter, and other bacteria involved in soil element cycling showed a significant positive correlation with the organic matter content in the sediments. Anaerobic bacteria like Thermoanaerobacterium displayed a significant positive correlation with water depth. Our study reveals the presence, composition, and distribution of MPs in Bosten Lake's sediments, shedding light on their potential ecological impact.

10.
Huan Jing Ke Xue ; 45(7): 4279-4292, 2024 Jul 08.
Artículo en Chino | MEDLINE | ID: mdl-39022973

RESUMEN

Microbial fertilizers have the characteristics of high efficiency and environmental protection in improving saline soils, and the application of functional microbial fertilizers is of great significance for the green abatement of saline barriers and the improvement of soil quality in coastal areas. The experiment was based on moderately saline soil in the coastal area of Hebei Province, with corn as the indicator crop, on the basis of conventional chemical fertilizer application. Different microbial fertilizer treatments, namely, T1 (conventional chemical fertilizer 750 kg·hm-2 + compound microbial agent 75 kg·hm-2), T2 (conventional chemical fertilizer 750 kg·hm-2 + Bacillus megaterium 300 kg·hm-2), T3 (conventional chemical fertilizer 750 kg·hm-2 + B. mucilaginosus 300 kg·hm-2), T4 (conventional chemical fertilizer 750 kg·hm-2 + organic silicon fertilizer 600 kg·hm-2), T5 (conventional chemical fertilizer 750 kg·hm-2 + bio-organic fertilizer 600 kg·hm-2), T6 (conventional fertilizer 750 kg·hm-2 + active microalgae 15 kg·hm-2), and CK (only fertilizer 750 kg·hm-2), were used for these seven treatments, to study the effects of different microbial fertilizers on soil nutrients, salinity, bacterial community, and corn yield and economic efficiency during two critical periods (V12 stage and maturity stage) of corn. The results showed that compared with that in CK, T1 significantly increased soil total nitrogen (TN) and available phosphorus (AP) contents during the whole growth period. Over the whole reproductive period, soil organic matter (OM) at maturity increased by 10.35% over the V12 stage compared to that in CK, but there was no significant difference between treatments. Compared with that in CK, T5 and T6 significantly reduced soil total salinity and Ca2+ content during the whole growth period by an average of 14.51%-18.48% and 24.25%-25.51%. T1 significantly increased the bacterial diversity index over the whole growth period by 45.16% compared to that in CK. The dominant soil phyla were Actinobacteria, Proteobacteria, Acidobacteria, and Chloroflexi, and the dominant genera were Bacillus and Geminicoccaceae. The most abundant functions of the bacterial community in the study area were chemoheterotrophy and aerobic chemoheterotrophy, with average relative abundances of 28.89% and 27.11%, and T3 and T6 significantly improved soil N cycling function. The results of redundancy analysis (RDA) indicated that Na+, SO42-, pH, and EC were important factors driving the structure of the bacterial community, and correlation heatmaps showed that Na+, SO42-, pH, and EC were significantly and positively correlated mainly with the phylum Planctomycetota, whereas soil OM and TN were significantly and positively correlated with Cyanobacteria. Compared with that in CK, T6 increased the relative abundance of Cyanobacteria and optimized the bacterial community structure during the whole growth period. Using recommended dosages of bacterial fertilizers T1 and T6 increased maize yield by 7.31%-24.83% and economic efficiency by 9.05%-23.23%, respectively. The preliminary results of soil chemical properties and yield correlation analysis revealed that EC, AP, HCO3-, and Mg2+ were the obstacle factors limiting soil productivity in coastal areas. In conclusion, the use of the compound bacterial agent (T1) and active microalgae (T6) at the recommended dosage can significantly enhance soil nutrients, reduce salinity, and improve the structural diversity of soil bacterial communities, which not only ensures the increase in maize yield and efficiency but also realizes the efficient use of microbial fertilizers and the improvement of soil quality.


Asunto(s)
Bacillus megaterium , Fertilizantes , Microbiología del Suelo , Suelo , Zea mays , Zea mays/crecimiento & desarrollo , Suelo/química , Bacillus megaterium/crecimiento & desarrollo , Bacillus megaterium/metabolismo , China , Salinidad , Biomasa , Agua de Mar/microbiología , Fósforo/análisis
11.
Microbiome ; 12(1): 128, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39020382

RESUMEN

BACKGROUND: Spring viremia of carp virus (SVCV) infects a wide range of fish species and causes high mortality rates in aquaculture. This viral infection is characterized by seasonal outbreaks that are temperature-dependent. However, the specific mechanism behind temperature-dependent SVCV infectivity and pathogenicity remains unclear. Given the high sensitivity of the composition of intestinal microbiota to temperature changes, it would be interesting to investigate if the intestinal microbiota of fish could play a role in modulating the infectivity of SVCV at different temperatures. RESULTS: Our study found that significantly higher infectivity and pathogenicity of SVCV infection in zebrafish occurred at relatively lower temperature. Comparative analysis of the intestinal microbiota in zebrafish exposed to high- and low-temperature conditions revealed that temperature influenced the abundance and diversity of the intestinal microbiota in zebrafish. A significantly higher abundance of Parabacteroides distasonis and its metabolite secondary bile acid (deoxycholic acid, DCA) was detected in the intestine of zebrafish exposed to high temperature. Both colonization of Parabacteroides distasonis and feeding of DCA to zebrafish at low temperature significantly reduced the mortality caused by SVCV. An in vitro assay demonstrated that DCA could inhibit the assembly and release of SVCV. Notably, DCA also showed an inhibitory effect on the infectious hematopoietic necrosis virus, another Rhabdoviridae member known to be more infectious at low temperature. CONCLUSIONS: This study provides evidence that temperature can be an important factor to influence the composition of intestinal microbiota in zebrafish, consequently impacting the infectivity and pathogenicity of SVCV. The findings highlight the enrichment of Parabacteroides distasonis and its derivative, DCA, in the intestines of zebrafish raised at high temperature, and they possess an important role in preventing the infection of SVCV and other Rhabdoviridae members in host fish. Video Abstract.


Asunto(s)
Bacteroidetes , Enfermedades de los Peces , Microbioma Gastrointestinal , Infecciones por Rhabdoviridae , Rhabdoviridae , Temperatura , Pez Cebra , Animales , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/virología , Infecciones por Rhabdoviridae/virología , Rhabdoviridae/fisiología , Rhabdoviridae/patogenicidad , Bacteroidetes/patogenicidad , Agua , Virus de la Necrosis Hematopoyética Infecciosa/patogenicidad
12.
J Pineal Res ; 76(5): e12991, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39039850

RESUMEN

Although rapid progression and a poor prognosis in influenza A virus (IAV) infection-induced acute exacerbation of chronic obstructive pulmonary disease (AECOPD) are frequently associated with metabolic energy disorders, the underlying mechanisms and rescue strategies remain unknown. We herein demonstrated that the level of resting energy expenditure increased significantly in IAV-induced AECOPD patients and that cellular energy exhaustion emerged earlier and more significantly in IAV-infected primary COPD bronchial epithelial (pDHBE) cells. The differentially expressed genes were enriched in the oxidative phosphorylation (OXPHOS) pathway; additionally, we consistently uncovered much earlier ATP exhaustion, more severe mitochondrial structural destruction and dysfunction, and OXPHOS impairment in IAV-inoculated pDHBE cells, and these changes were rescued by melatonin. The level of OMA1-dependent cleavage of OPA1 in the mitochondrial inner membrane and the shift in energy metabolism from OXPHOS to glycolysis were significantly increased in IAV-infected pDHBE cells; however, these changes were rescued by OMA1-siRNA or melatonin further treatment. Collectively, our data revealed that melatonin rescued IAV-induced cellular energy exhaustion via OMA1-OPA1-S to improve the clinical prognosis in COPD. This treatment may serve as a potential therapeutic agent for patients in which AECOPD is induced by IAV.


Asunto(s)
Metabolismo Energético , GTP Fosfohidrolasas , Virus de la Influenza A , Melatonina , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Metabolismo Energético/efectos de los fármacos , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/genética , Virus de la Influenza A/efectos de los fármacos , Gripe Humana/metabolismo , Gripe Humana/tratamiento farmacológico , Melatonina/farmacología , Metaloendopeptidasas , Fosforilación Oxidativa/efectos de los fármacos , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico
13.
Artículo en Inglés | MEDLINE | ID: mdl-38871558

RESUMEN

BACKGROUND: Talquetamab is a bispecific antibody targeting the multiple myeloma-associated antigen G protein-coupled receptor family C group 5 member D (GPRC5D). In the phase 1/2 MonumenTAL-1 trial (NCT03399799/NCT04634552), overall responses rates were > 71% in patients with triple-class exposed relapsed/refractory multiple myeloma (RRMM). Due to the distribution of the target antigen, a unique pattern of GPRC5D-associated adverse events (AEs) was observed, together with T-cell redirection-associated AEs. Management strategies for talquetamab-associated AEs are described. DISCUSSION: GPRC5D-associated AEs included dermatologic (rash, nonrash, and nail toxicities) and oral AEs (dysgeusia, dysphagia, and dry mouth). The incidence of cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) were consistent with other T-cell redirection therapies. The incidence of high-grade infections was lower than observed with B-cell maturation antigen-targeting bispecific antibodies, with less frequent use of intravenous immunoglobulin required. GPRC5D-associated AEs were mostly low grade and led to few discontinuations. Skin toxicities were managed with emollients, topical corticosteroids, and oral corticosteroids (for high-grade, persistent, or AEs that progress). Nail toxicities were commonly managed with emollients. Based on investigator experience, dose modification may be effective for controlling oral events. Observation for potential weight changes is required. Infections were managed per standard of care. CRS and ICANS were effectively managed, consistent with other trials of T-cell redirection therapies. CONCLUSION: Although talquetamab had a distinct safety profile, AEs were considered clinically manageable and mostly low grade. With appropriate education and support, health care practitioners can ensure patients with RRMM maintain quality of life and treatment adherence.

14.
Methods Mol Biol ; 2825: 113-124, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38913305

RESUMEN

Optical genome mapping (OGM) has generated excitement following decades of research and development. Now, commercially available technical platforms have been used to compare various other cytogenetic and cytogenomic technologies, including karyotype, microarrays, and DNA sequencing, with impressive results. In this chapter, using OGM as a case study, we advocate for a new trend in future cytogenomics, emphasizing the power of machine automation to deliver higher-quality cytogenomic data. By briefly discussing OGM, along with its major advantages and limitations, we underscore the importance of karyotype-based genomic research, from both a theoretical framework and a new technology perspective. We also call for the encouragement of further technological platform development for the future of cytogenetics and cytogenomics.


Asunto(s)
Mapeo Cromosómico , Genómica , Humanos , Genómica/métodos , Mapeo Cromosómico/métodos
15.
Methods Mol Biol ; 2825: 3-37, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38913301

RESUMEN

The promises of the cancer genome sequencing project, combined with various -omics technologies, have raised questions about the importance of cancer cytogenetic analyses. It is suggested that DNA sequencing provides high resolution, speed, and automation, potentially replacing cytogenetic testing. We disagree with this reductionist prediction. On the contrary, various sequencing projects have unexpectedly challenged gene theory and highlighted the importance of the genome or karyotype in organizing gene network interactions. Consequently, profiling the karyotype can be more meaningful than solely profiling gene mutations, especially in cancer where karyotype alterations mediate cellular macroevolution dominance. In this chapter, recent studies that illustrate the ultimate importance of karyotype in cancer genomics and evolution are briefly reviewed. In particular, the long-ignored non-clonal chromosome aberrations or NCCAs are linked to genome or chromosome instability, genome chaos is linked to genome reorganization under cellular crisis, and the two-phased cancer evolution reconciles the relationship between genome alteration-mediated punctuated macroevolution and gene mutation-mediated stepwise microevolution. By further synthesizing, the concept of karyotype coding is discussed in the context of information management. Altogether, we call for a new era of cancer cytogenetics and cytogenomics, where an array of technical frontiers can be explored further, which is crucial for both basic research and clinical implications in the cancer field.


Asunto(s)
Aberraciones Cromosómicas , Genómica , Neoplasias , Humanos , Neoplasias/genética , Genómica/métodos , Análisis Citogenético/métodos , Citogenética/métodos , Cariotipificación/métodos , Mutación
16.
Methods Mol Biol ; 2825: 263-280, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38913315

RESUMEN

Karyotype coding, which encompasses the complete chromosome sets and their topological genomic relationships within a given species, encodes system-level information that organizes and preserves genes' function, and determines the macroevolution of cancer. This new recognition emphasizes the crucial role of karyotype characterization in cancer research. To advance this cancer cytogenetic/cytogenomic concept and its platforms, this study outlines protocols for monitoring the karyotype landscape during treatment-induced rapid drug resistance in cancer. It emphasizes four key perspectives: combinational analyses of phenotype and karyotype, a focus on the entire evolutionary process through longitudinal analysis, a comparison of whole landscape dynamics by including various types of NCCAs (including genome chaos), and the use of the same process to prioritize different genomic scales. This protocol holds promise for studying numerous evolutionary aspects of cancers, and it further enhances the power of karyotype analysis in cancer research.


Asunto(s)
Resistencia a Antineoplásicos , Cariotipo , Cariotipificación , Neoplasias , Humanos , Resistencia a Antineoplásicos/genética , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Cariotipificación/métodos , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Evolución Molecular , Fenotipo
17.
Anal Chem ; 96(25): 10283-10293, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38864304

RESUMEN

Single-nucleotide polymorphism (SNP) is widely used in the study of disease-related genes and in the genetic study of animal and plant strains. Therefore, SNP detection is crucial for biomedical diagnosis and treatment as well as for molecular design breeding of animals and plants. In this regard, this article describes a novel technique for detecting SNP using flap endonuclease 1 (FEN 1) as a specific recognition element and catalytic hairpin assembly (CHA) cascade reaction as a signal amplification strategy. The mutant target (MT) was hybridized with a biotin-modified upstream probe and hairpin-type downstream probe (DP) to form a specific three-base overlapping structure. Then, FEN 1 was employed for three-base overlapping structure-specific recognition, namely, the precise SNP site identification and the 5' flap of DP dissociation. After dissociation, the hybridized probes were magnetically separated by a streptavidin-biotin complex. Especially, the ability to establish such a hairpin-type DP provided a powerful tool that could be used to hide the cut sequence (CS) and avoid false-positive signals. The cleaved CS initiated the CHA reaction and allowed superior fluorescence signal generation. Owing to the high specificity of FEN 1 for single base recognition, only the MT could be distinguished from the wild-type target and mismatched DNA. Owing to the dual signal amplification, as low as 0.36 fM MT and 1% mutation abundance from the mixtures could be detected, respectively. Furthermore, it could accurately identify SNPs from human cancer cells, as well as soybean leaf genome extracts. This strategy paves the way for the development of more precise and sensitive tools for diagnosing early onset diseases as well as molecular design breeding tools.


Asunto(s)
Endonucleasas de ADN Solapado , Polimorfismo de Nucleótido Simple , Endonucleasas de ADN Solapado/genética , Endonucleasas de ADN Solapado/metabolismo , Humanos , Técnicas de Amplificación de Ácido Nucleico/métodos , Hibridación de Ácido Nucleico
18.
J Clin Oncol ; : JCO2401008, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38879802

RESUMEN

PURPOSE: We present a phase I/II first-in-human trial evaluating the safety and efficacy of 50 mg and 200 mg doses of linvoseltamab, a B-cell maturation antigen × CD3 bispecific antibody in relapsed/refractory multiple myeloma (RRMM). METHODS: Phase II eligible patients had RRMM that either progressed on/after ≥three lines of therapy including a proteasome inhibitor (PI), an immunomodulatory drug (IMiD), and an anti-CD38 antibody or was triple-class (PI/IMiD/anti-CD38) refractory. Phase II treatment was once a week through week 14 and then once every 2 weeks. Phase II 200 mg patients who achieved a ≥very good partial response by week 24 received linvoseltamab once every 4 weeks. The primary end point in phase II was overall response rate (ORR). RESULTS: Among the 117 patients treated with 200 mg, the median age was 70 years, 39% had high-risk cytogenetics, and 28% had penta-refractory disease. At a median follow-up of 14.3 months, the ORR was 71%, with 50% achieving ≥complete response (CR). In 104 patients treated with 50 mg at a median follow-up of 7.4 months, the ORR was 48%, with 21% achieving ≥CR. The median duration of response (DOR) for 200 mg patients (n = 83) was 29.4 months (95% CI, 19.2 to not evaluable). Among 200 mg patients, the most common adverse events included cytokine release syndrome (35.0% Gr1, 10.3% Gr2, 0.9% Gr3), neutropenia (0.9% Gr2, 18.8% Gr3, 23.1% Gr4), and anemia (3.4% Gr1, 4.3% Gr2, 30.8% Gr3). Immune effector cell-associated neurotoxicity syndrome occurred in 7.7% of patients (2.6% each Gr1, Gr2, Gr3). Infections were reported in 74.4% of patients (33.3% Gr3, 2.6% Gr4); infection frequency and severity declined over time. CONCLUSION: Linvoseltamab 200 mg induced deep and durable responses, with a median DOR of 29.4 months, in patients with RRMM with an acceptable safety profile.

19.
Talanta ; 277: 126397, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38865956

RESUMEN

Graphene-based nanomaterials have attracted significant attention for their potentials in biomedical and biotechnology applications in recent years, owing to the outstanding physical and chemical properties. However, the interaction mechanism and impact on biological activity of macro/micro biomolecules still require more concerns and further research in order to enhance their applicability in biosensors, etc. Herein, an integrated method has been developed to predict the protein bioactivity performance when interacting with nanomaterials for protein-based biosensor. Molecular dynamics simulation and molecular docking technique were consolidated to investigate several nanomaterials: C60 fullerene, single-walled carbon nanotube, pristine graphene and graphene oxide, and their effect when interacting with protein. The adsorption behavior, secondary structure changes and protein bioactivity changes were simulated, and the results of protein activity simulation were verified in combination with atomic force spectrum, circular dichroism spectrum fluorescence and electrochemical experiments. The best quantification alignment between bioactivity obtained by simulation and experiment measurements was further explored. The two proteins, RNase A and Exonuclease III, were regarded as analysis model for the proof of concept, and the prediction accuracy of protein bioactivity could reach up to 0.98. The study shows an easy-to-operate and systematic approach to predict the effects of graphene-based nanomaterials on protein bioactivity, which holds guiding significance for the design of protein-related biosensors. In addition, the proposed prediction model is not limited to carbon-based nanomaterials and can be extended to other types of nanomaterials. This facilitates the rapid, simple, and low-cost selection of efficient and biosafe nanomaterials candidates for protein-related applications in biosensing and biomedical systems.


Asunto(s)
Técnicas Biosensibles , Fulerenos , Grafito , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Nanoestructuras , Nanotubos de Carbono , Grafito/química , Técnicas Biosensibles/métodos , Nanotubos de Carbono/química , Fulerenos/química , Nanoestructuras/química , Proteínas/química , Proteínas/análisis , Proteínas/metabolismo , Adsorción , Simulación por Computador
20.
Acta Pharm Sin B ; 14(6): 2402-2427, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38828146

RESUMEN

Targeted protein degradation (TPD) represented by proteolysis targeting chimeras (PROTACs) marks a significant stride in drug discovery. A plethora of innovative technologies inspired by PROTAC have not only revolutionized the landscape of TPD but have the potential to unlock functionalities beyond degradation. Non-small-molecule-based approaches play an irreplaceable role in this field. A wide variety of agents spanning a broad chemical spectrum, including peptides, nucleic acids, antibodies, and even vaccines, which not only prove instrumental in overcoming the constraints of conventional small molecule entities but also provided rapidly renewing paradigms. Herein we summarize the burgeoning non-small molecule technological platforms inspired by PROTACs, including three major trajectories, to provide insights for the design strategies based on novel paradigms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...