Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 7169, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169013

RESUMEN

Protein complexes are fundamental to all cellular processes, so understanding their evolutionary history and assembly processes is important. Gene duplication followed by divergence is considered a primary mechanism for diversifying protein complexes. Nonetheless, to what extent assembly of present-day paralogous complexes has been constrained by their long evolutionary pathways and how cross-complex interference is avoided remain unanswered questions. Subunits of protein complexes are often stabilized upon complex formation, whereas unincorporated subunits are degraded. How such cooperative stability influences protein complex assembly also remains unclear. Here, we demonstrate that subcomplexes determined by cooperative stabilization interactions serve as building blocks for protein complex assembly. We further develop a protein stability-guided method to compare the assembly processes of paralogous complexes in cellulo. Our findings support that oligomeric state and the structural organization of paralogous complexes can be maintained even if their assembly processes are rearranged. Our results indicate that divergent assembly processes by paralogous complexes not only enable the complexes to evolve new functions, but also reinforce their segregation by establishing incompatibility against deleterious hybrid assemblies.


Asunto(s)
Complejos Multiproteicos , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Estabilidad Proteica , Evolución Molecular , Subunidades de Proteína/metabolismo , Subunidades de Proteína/química , Multimerización de Proteína , Unión Proteica , Duplicación de Gen
2.
BMC Bioinformatics ; 25(1): 209, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867193

RESUMEN

BACKGROUND: Single-cell RNA sequencing (sc-RNASeq) data illuminate transcriptomic heterogeneity but also possess a high level of noise, abundant missing entries and sometimes inadequate or no cell type annotations at all. Bulk-level gene expression data lack direct information of cell population composition but are more robust and complete and often better annotated. We propose a modeling framework to integrate bulk-level and single-cell RNASeq data to address the deficiencies and leverage the mutual strengths of each type of data and enable a more comprehensive inference of their transcriptomic heterogeneity. Contrary to the standard approaches of factorizing the bulk-level data with one algorithm and (for some methods) treating single-cell RNASeq data as references to decompose bulk-level data, we employed multiple deconvolution algorithms to factorize the bulk-level data, constructed the probabilistic graphical models of cell-level gene expressions from the decomposition outcomes, and compared the log-likelihood scores of these models in single-cell data. We term this framework backward deconvolution as inference operates from coarse-grained bulk-level data to fine-grained single-cell data. As the abundant missing entries in sc-RNASeq data have a significant effect on log-likelihood scores, we also developed a criterion for inclusion or exclusion of zero entries in log-likelihood score computation. RESULTS: We selected nine deconvolution algorithms and validated backward deconvolution in five datasets. In the in-silico mixtures of mouse sc-RNASeq data, the log-likelihood scores of the deconvolution algorithms were strongly anticorrelated with their errors of mixture coefficients and cell type specific gene expression signatures. In the true bulk-level mouse data, the sample mixture coefficients were unknown but the log-likelihood scores were strongly correlated with accuracy rates of inferred cell types. In the data of autism spectrum disorder (ASD) and normal controls, we found that ASD brains possessed higher fractions of astrocytes and lower fractions of NRGN-expressing neurons than normal controls. In datasets of breast cancer and low-grade gliomas (LGG), we compared the log-likelihood scores of three simple hypotheses about the gene expression patterns of the cell types underlying the tumor subtypes. The model that tumors of each subtype were dominated by one cell type persistently outperformed an alternative model that each cell type had elevated expression in one gene group and tumors were mixtures of those cell types. Superiority of the former model is also supported by comparing the real breast cancer sc-RNASeq clusters with those generated by simulated sc-RNASeq data. CONCLUSIONS: The results indicate that backward deconvolution serves as a sensible model selection tool for deconvolution algorithms and facilitates discerning hypotheses about cell type compositions underlying heterogeneous specimens such as tumors.


Asunto(s)
Algoritmos , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Transcriptoma , Análisis de la Célula Individual/métodos , Análisis de Secuencia de ARN/métodos , Transcriptoma/genética , Humanos , Perfilación de la Expresión Génica/métodos , Animales , Ratones , Análisis de Expresión Génica de una Sola Célula
3.
Sci Rep ; 12(1): 10490, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35729235

RESUMEN

Protein complexes are the fundamental units of many biological functions. Despite their many advantages, one major adverse impact of protein complexes is accumulations of unassembled subunits that may disrupt other processes or exert cytotoxic effects. Synthesis of excess subunits can be inhibited via negative feedback control or they can be degraded more efficiently than assembled subunits, with this latter being termed cooperative stability. Whereas controlled synthesis of complex subunits has been investigated extensively, how cooperative stability acts in complex formation remains largely unexplored. To fill this knowledge gap, we have built quantitative models of heteromeric complexes with or without cooperative stability and compared their behaviours in the presence of synthesis rate variations. A system displaying cooperative stability is robust against synthesis rate variations as it retains high dimer/monomer ratios across a broad range of parameter configurations. Moreover, cooperative stability can alleviate the constraint of limited supply of a given subunit and makes complex abundance more responsive to unilateral upregulation of another subunit. We also conducted an in silico experiment to comprehensively characterize and compare four types of circuits that incorporate combinations of negative feedback control and cooperative stability in terms of eight systems characteristics pertaining to optimality, robustness and controllability. Intriguingly, though individual circuits prevailed for distinct characteristics, the system with cooperative stability alone achieved the most balanced performance across all characteristics. Our study provides theoretical justification for the contribution of cooperative stability to natural biological systems and represents a guideline for designing synthetic complex formation systems with desirable characteristics.

4.
Biol Open ; 11(6)2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35665803

RESUMEN

Despite the remarkable progress in probing tumor transcriptomic heterogeneity by single-cell RNA sequencing (sc-RNAseq) data, several gaps exist in prior studies. Tumor heterogeneity is frequently mentioned but not quantified. Clustering analyses typically target cells rather than genes, and differential levels of transcriptomic heterogeneity of gene clusters are not characterized. Relations between gene clusters inferred from multiple datasets remain less explored. We provided a series of quantitative methods to analyze cancer sc-RNAseq data. First, we proposed two quantitative measures to assess intra-tumoral heterogeneity/homogeneity. Second, we established a hierarchy of gene clusters from sc-RNAseq data, devised an algorithm to reduce the gene cluster hierarchy to a compact structure, and characterized the gene clusters with functional enrichment and heterogeneity. Third, we developed an algorithm to align the gene cluster hierarchies from multiple datasets to a small number of meta gene clusters. By applying these methods to nine cancer sc-RNAseq datasets, we discovered that cancer cell transcriptomes were more homogeneous within tumors than the accompanying normal cells. Furthermore, many gene clusters from the nine datasets were aligned to two large meta gene clusters, which had high and low heterogeneity and were enriched with distinct functions. Finally, we found the homogeneous meta gene cluster retained stronger expression coherence and associations with survival times in bulk level RNAseq data than the heterogeneous meta gene cluster, yet the combinatorial expression patterns of breast cancer subtypes in bulk level data were not preserved in single-cell data. The inference outcomes derived from nine cancer sc-RNAseq datasets provide insights about the contributing factors for transcriptomic heterogeneity of cancer cells and complex relations between bulk level and single-cell RNAseq data. They demonstrate the utility of our methods to enable a comprehensive characterization of co-expressed gene clusters in a wide range of sc-RNAseq data in cancers and beyond.


Asunto(s)
Neoplasias de la Mama , Transcriptoma , Algoritmos , Neoplasias de la Mama/genética , Análisis por Conglomerados , Femenino , Humanos , Familia de Multigenes
5.
PLOS Digit Health ; 1(12): e0000151, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36812605

RESUMEN

Cancer cells harbor molecular alterations at all levels of information processing. Genomic/epigenomic and transcriptomic alterations are inter-related between genes, within and across cancer types and may affect clinical phenotypes. Despite the abundant prior studies of integrating cancer multi-omics data, none of them organizes these associations in a hierarchical structure and validates the discoveries in extensive external data. We infer this Integrated Hierarchical Association Structure (IHAS) from the complete data of The Cancer Genome Atlas (TCGA) and compile a compendium of cancer multi-omics associations. Intriguingly, diverse alterations on genomes/epigenomes from multiple cancer types impact transcriptions of 18 Gene Groups. Half of them are further reduced to three Meta Gene Groups enriched with (1) immune and inflammatory responses, (2) embryonic development and neurogenesis, (3) cell cycle process and DNA repair. Over 80% of the clinical/molecular phenotypes reported in TCGA are aligned with the combinatorial expressions of Meta Gene Groups, Gene Groups, and other IHAS subunits. Furthermore, IHAS derived from TCGA is validated in more than 300 external datasets including multi-omics measurements and cellular responses upon drug treatments and gene perturbations in tumors, cancer cell lines, and normal tissues. To sum up, IHAS stratifies patients in terms of molecular signatures of its subunits, selects targeted genes or drugs for precision cancer therapy, and demonstrates that associations between survival times and transcriptional biomarkers may vary with cancer types. These rich information is critical for diagnosis and treatments of cancers.

6.
Sci Rep ; 11(1): 17741, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34493766

RESUMEN

Principal Component Analysis (PCA) projects high-dimensional genotype data into a few components that discern populations. Ancestry Informative Markers (AIMs) are a small subset of SNPs capable of distinguishing populations. We integrate these two approaches by proposing an algorithm to identify necessary informative loci whose removal from the data deteriorates the PCA structure. Unlike classical AIMs, necessary informative loci densely cover the genome, hence can illuminate the evolution and mixing history of populations. We conduct a comprehensive analysis to the genotype data of the 1000 Genomes Project using necessary informative loci. Projections along the top seven principal components demarcate populations at distinct geographic levels. Millions of necessary informative loci along each PC are identified. Population identities along each PC are approximately determined by weighted sums of minor (or major) alleles over the informative loci. Variations of allele frequencies are aligned with the history and direction of population evolution. The population distribution of projections along the top three PCs is recapitulated by a simple demographic model based on several waves of founder population separation and mixing. Informative loci possess locational concentration in the genome and functional enrichment. Genes at two hot spots encompassing dense PC 7 informative loci exhibit differential expressions among European populations. The mosaic of local ancestry in the genome of a mixed descendant from multiple populations can be inferred from partial PCA projections of informative loci. Finally, informative loci derived from the 1000 Genomes data well predict the projections of an independent genotype data of South Asians. These results demonstrate the utility and relevance of informative loci to investigate human evolution.


Asunto(s)
Evolución Molecular , Genoma Humano , Genotipo , Migración Humana , Algoritmos , Conjuntos de Datos como Asunto , Expresión Génica , Genética de Población , Humanos , Polimorfismo de Nucleótido Simple/genética , Análisis de Componente Principal , Grupos Raciales/genética
7.
EMBO J ; 40(7): e105846, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33469951

RESUMEN

Protein termini are determinants of protein stability. Proteins bearing degradation signals, or degrons, at their amino- or carboxyl-termini are eliminated by the N- or C-degron pathways, respectively. We aimed to elucidate the function of C-degron pathways and to unveil how normal proteomes are exempt from C-degron pathway-mediated destruction. Our data reveal that C-degron pathways remove mislocalized cellular proteins and cleavage products of deubiquitinating enzymes. Furthermore, the C-degron and N-degron pathways cooperate in protein removal. Proteome analysis revealed a shortfall in normal proteins targeted by C-degron pathways, but not of defective proteins, suggesting proteolysis-based immunity as a constraint for protein evolution/selection. Our work highlights the importance of protein termini for protein quality surveillance, and the relationship between the functional proteome and protein degradation pathways.


Asunto(s)
Proteolisis , Ubiquitinación , Secuencias de Aminoácidos , Línea Celular Tumoral , Células HEK293 , Humanos , Transporte de Proteínas , Proteoma/química , Proteoma/metabolismo , Receptores de Citocinas/metabolismo
8.
Am J Hum Genet ; 106(3): 371-388, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32142644

RESUMEN

The population of the United States is shaped by centuries of migration, isolation, growth, and admixture between ancestors of global origins. Here, we assemble a comprehensive view of recent population history by studying the ancestry and population structure of more than 32,000 individuals in the US using genetic, ancestral birth origin, and geographic data from the National Geographic Genographic Project. We identify migration routes and barriers that reflect historical demographic events. We also uncover the spatial patterns of relatedness in subpopulations through the combination of haplotype clustering, ancestral birth origin analysis, and local ancestry inference. Examples of these patterns include substantial substructure and heterogeneity in Hispanics/Latinos, isolation-by-distance in African Americans, elevated levels of relatedness and homozygosity in Asian immigrants, and fine-scale structure in European descents. Taken together, our results provide detailed insights into the genetic structure and demographic history of the diverse US population.


Asunto(s)
Emigración e Inmigración , Genética de Población , Haplotipos , Análisis por Conglomerados , Demografía , Humanos , Estados Unidos
9.
PLoS One ; 14(8): e0221703, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31437254

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0185475.].

10.
J Theor Biol ; 474: 88-102, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31077681

RESUMEN

Despite recent advances in targeted drugs and immunotherapy, cancer remains "the emperor of all maladies" due to almost inevitable emergence of resistance. Drug resistance is thought to be driven by genetic alterations and/or dynamic plasticity that deregulate pathway activities and regulatory programs of a highly heterogeneous tumour. In this study, we propose a modelling framework to simulate population dynamics of heterogeneous tumour cells with reversible drug resistance. Drug sensitivity of a tumour cell is determined by its internal states, which are demarcated by coordinated activities of multiple interconnected oncogenic pathways. Transitions between cellular states depend on the effects of targeted drugs and regulatory relations between the pathways. Under this framework, we build a simple model to capture drug resistance characteristics of BRAF-mutant melanoma, where two cell states are determined by two mutually inhibitory - main and alternative - pathways. We assume that cells with an activated main pathway are proliferative yet sensitive to the BRAF inhibitor, and cells with an activated alternative pathway are quiescent but resistant to the drug. We describe a dynamical process of tumour growth under various drug regimens using the explicit solutions of mean-field equations. Based on these solutions, we compare efficacy of three treatment strategies from simulated data: static treatments with continuous and constant dosages, periodic treatments with regular intermittent active phases and drug holidays, and treatments derived from optimal control theory (OCT). Periodic treatments outperform static treatments with a considerable margin, while treatments based on OCT outperform the best periodic treatment. Our results provide insights regarding optimal cancer treatment modalities for heterogeneous tumours, and may guide the development of optimal therapeutic strategies to circumvent plastic drug resistance. They can also be used to evaluate the efficacy of suboptimal treatments that may account for side effects of the treatment and the cost of its application.


Asunto(s)
Resistencia a Antineoplásicos , Melanoma , Modelos Biológicos , Mutación , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas B-raf , Humanos , Melanoma/tratamiento farmacológico , Melanoma/enzimología , Melanoma/genética , Melanoma/patología , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo
11.
BMC Bioinformatics ; 20(1): 145, 2019 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-30885118

RESUMEN

BACKGROUND: Gene Set Enrichment Analysis (GSEA) is a powerful tool to identify enriched functional categories of informative biomarkers. Canonical GSEA takes one-dimensional feature scores derived from the data of one platform as inputs. Numerous extensions of GSEA handling multimodal OMIC data are proposed, yet none of them explicitly captures combinatorial relations of feature scores from multiple platforms. RESULTS: We propose multivariate GSEA (MGSEA) to capture combinatorial relations of gene set enrichment among multiple platform features. MGSEA successfully captures designed feature relations from simulated data. By applying it to the scores of delineating breast cancer and glioblastoma multiforme (GBM) subtypes from The Cancer Genome Atlas (TCGA) datasets of CNV, DNA methylation and mRNA expressions, we find that breast cancer and GBM data yield both similar and distinct outcomes. Among the enriched functional categories, subtype-specific biomarkers are dominated by mRNA expression in many functional categories in both cancer types and also by CNV in many functional categories in breast cancer. The enriched functional categories belonging to distinct combinatorial patterns are involved different oncogenic processes: cell proliferation (such as cell cycle control, estrogen responses, MYC and E2F targets) for mRNA expression in breast cancer, invasion and metastasis (such as cell adhesion and epithelial-mesenchymal transition (EMT)) for CNV in breast cancer, and diverse processes (such as immune and inflammatory responses, cell adhesion, angiogenesis, and EMT) for mRNA expression in GBM. These observations persist in two external datasets (Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) for breast cancer and Repository for Molecular Brain Neoplasia Data (REMBRANDT) for GBM) and are consistent with knowledge of cancer subtypes. We further compare the characteristics of MGSEA with several extensions of GSEA and point out the pros and cons of each method. CONCLUSIONS: We demonstrated the utility of MGSEA by inferring the combinatorial relations of multiple platforms for cancer subtype delineation in three multi-OMIC datasets: TCGA, METABRIC and REMBRANDT. The inferred combinatorial patterns are consistent with the current knowledge and also reveal novel insights about cancer subtypes. MGSEA can be further applied to any genotype-phenotype association problems with multimodal OMIC data.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias de la Mama/genética , Glioblastoma/genética , Biomarcadores de Tumor/genética , Proliferación Celular , Metilación de ADN , Bases de Datos Genéticas , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Humanos , Modelos Teóricos , Análisis Multivariante
12.
Sci Rep ; 8(1): 11456, 2018 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-30061703

RESUMEN

Most cancer driver genes are involved in generic cellular processes such as DNA repair, cell proliferation and cell adhesion, yet their mutations are often confined to specific cancer types. To resolve this paradox, we explained mutation frequencies of selected genes across tumor types with four features in the corresponding normal tissues from cancer-free subjects: mRNA expression and chromatin accessibility of mutated genes, mRNA expressions of their neighbors in curated pathways and the protein-protein interaction network. Encouragingly, these transcriptomic/epigenomic features in normal tissues were closely associated with mutational/functional characteristics in tumors. First, chromatin accessibility was a necessary but not sufficient condition for frequent mutations. Second, variations of mutation frequencies in selected genes across tissue types were significantly associated with all four features. Third, the genes possessing significant associations between mutation frequency variations and pathway gene expression were enriched with documented cancer genes. We further proposed a novel bivariate gene set enrichment analysis and confirmed that the pathway gene expression was the dominant factor in cancer gene enrichment. These findings shed lights on the functional roles of genes in normal tissues in shaping the mutational landscape during tumor genome evolution.


Asunto(s)
Epigénesis Genética , Mutación/genética , Neoplasias/genética , Transcriptoma/genética , Cromatina/metabolismo , Genes Relacionados con las Neoplasias , Humanos , Tasa de Mutación , Especificidad de Órganos/genética
13.
PLoS One ; 12(10): e0185475, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28981547

RESUMEN

The great amount of gene expression data has brought a big challenge for the discovery of Gene Regulatory Network (GRN). For network reconstruction and the investigation of regulatory relations, it is desirable to ensure directness of links between genes on a map, infer their directionality and explore candidate biological functions from high-throughput transcriptomic data. To address these problems, we introduce a Boolean Function Network (BFN) model based on techniques of hidden Markov model (HMM), likelihood ratio test and Boolean logic functions. BFN consists of two consecutive tests to establish links between pairs of genes and check their directness. We evaluate the performance of BFN through the application to S. cerevisiae time course data. BFN produces regulatory relations which show consistency with succession of cell cycle phases. Furthermore, it also improves sensitivity and specificity when compared with alternative methods of genetic network reverse engineering. Moreover, we demonstrate that BFN can provide proper resolution for GO enrichment of gene sets. Finally, the Boolean functions discovered by BFN can provide useful insights for the identification of control mechanisms of regulatory processes, which is the special advantage of the proposed approach. In combination with low computational complexity, BFN can serve as an efficient screening tool to reconstruct genes relations on the whole genome level. In addition, the BFN approach is also feasible to a wide range of time course datasets.


Asunto(s)
Redes Reguladoras de Genes , Genes Fúngicos , Saccharomyces cerevisiae/metabolismo , Regulación de la Expresión Génica , Funciones de Verosimilitud , Cadenas de Markov , Transcripción Genética
14.
Cell Syst ; 5(2): 105-118.e9, 2017 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-28837809

RESUMEN

The systematic sequencing of the cancer genome has led to the identification of numerous genetic alterations in cancer. However, a deeper understanding of the functional consequences of these alterations is necessary to guide appropriate therapeutic strategies. Here, we describe Onco-GPS (OncoGenic Positioning System), a data-driven analysis framework to organize individual tumor samples with shared oncogenic alterations onto a reference map defined by their underlying cellular states. We applied the methodology to the RAS pathway and identified nine distinct components that reflect transcriptional activities downstream of RAS and defined several functional states associated with patterns of transcriptional component activation that associates with genomic hallmarks and response to genetic and pharmacological perturbations. These results show that the Onco-GPS is an effective approach to explore the complex landscape of oncogenic cellular states across cancers, and an analytic framework to summarize knowledge, establish relationships, and generate more effective disease models for research or as part of individualized precision medicine paradigms.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Perfilación de la Expresión Génica/métodos , Genes ras/genética , Genoma , Humanos , Sistema de Señalización de MAP Quinasas , Neoplasias/patología , Medicina de Precisión
15.
PLoS Comput Biol ; 13(2): e1005367, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28178267

RESUMEN

Ambiguity in genetic codes exists in cases where certain stop codons are alternatively used to encode non-canonical amino acids. In selenoprotein transcripts, the UGA codon may either represent a translation termination signal or a selenocysteine (Sec) codon. Translating UGA to Sec requires selenium and specialized Sec incorporation machinery such as the interaction between the SECIS element and SBP2 protein, but how these factors quantitatively affect alternative assignments of UGA has not been fully investigated. We developed a model simulating the UGA decoding process. Our model is based on the following assumptions: (1) charged Sec-specific tRNAs (Sec-tRNASec) and release factors compete for a UGA site, (2) Sec-tRNASec abundance is limited by the concentrations of selenium and Sec-specific tRNA (tRNASec) precursors, and (3) all synthesis reactions follow first-order kinetics. We demonstrated that this model captured two prominent characteristics observed from experimental data. First, UGA to Sec decoding increases with elevated selenium availability, but saturates under high selenium supply. Second, the efficiency of Sec incorporation is reduced with increasing selenoprotein synthesis. We measured the expressions of four selenoprotein constructs and estimated their model parameters. Their inferred Sec incorporation efficiencies did not correlate well with their SECIS-SBP2 binding affinities, suggesting the existence of additional factors determining the hierarchy of selenoprotein synthesis under selenium deficiency. This model provides a framework to systematically study the interplay of factors affecting the dual definitions of a genetic codon.


Asunto(s)
Codón Iniciador/genética , Codón de Terminación/genética , Modelos Genéticos , Proteínas/genética , Selenocisteína/genética , Selenoproteínas/genética , Simulación por Computador , Biosíntesis de Proteínas/genética , Selenoproteínas/biosíntesis , Análisis de Secuencia de ARN/métodos
16.
Biol Direct ; 11(1): 56, 2016 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-27770811

RESUMEN

BACKGROUND: Current cancer precision medicine strategies match therapies to static consensus molecular properties of an individual's cancer, thus determining the next therapeutic maneuver. These strategies typically maintain a constant treatment while the cancer is not worsening. However, cancers feature complicated sub-clonal structure and dynamic evolution. We have recently shown, in a comprehensive simulation of two non-cross resistant therapies across a broad parameter space representing realistic tumors, that substantial improvement in cure rates and median survival can be obtained utilizing dynamic precision medicine strategies. These dynamic strategies explicitly consider intratumoral heterogeneity and evolutionary dynamics, including predicted future drug resistance states, and reevaluate optimal therapy every 45 days. However, the optimization is performed in single 45 day steps ("single-step optimization"). RESULTS: Herein we evaluate analogous strategies that think multiple therapeutic maneuvers ahead, considering potential outcomes at 5 steps ahead ("multi-step optimization") or 40 steps ahead ("adaptive long term optimization (ALTO)") when recommending the optimal therapy in each 45 day block, in simulations involving both 2 and 3 non-cross resistant therapies. We also evaluate an ALTO approach for situations where simultaneous combination therapy is not feasible ("Adaptive long term optimization: serial monotherapy only (ALTO-SMO)"). Simulations utilize populations of 764,000 and 1,700,000 virtual patients for 2 and 3 drug cases, respectively. Each virtual patient represents a unique clinical presentation including sizes of major and minor tumor subclones, growth rates, evolution rates, and drug sensitivities. While multi-step optimization and ALTO provide no significant average survival benefit, cure rates are significantly increased by ALTO. Furthermore, in the subset of individual virtual patients demonstrating clinically significant difference in outcome between approaches, by far the majority show an advantage of multi-step or ALTO over single-step optimization. ALTO-SMO delivers cure rates superior or equal to those of single- or multi-step optimization, in 2 and 3 drug cases respectively. CONCLUSION: In selected virtual patients incurable by dynamic precision medicine using single-step optimization, analogous strategies that "think ahead" can deliver long-term survival and cure without any disadvantage for non-responders. When therapies require dose reduction in combination (due to toxicity), optimal strategies feature complex patterns involving rapidly interleaved pulses of combinations and high dose monotherapy. REVIEWERS: This article was reviewed by Wendy Cornell, Marek Kimmel, and Andrzej Swierniak. Wendy Cornell and Andrzej Swierniak are external reviewers (not members of the Biology Direct editorial board). Andrzej Swierniak was nominated by Marek Kimmel.


Asunto(s)
Evolución Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Medicina de Precisión/métodos , Simulación por Computador , Epigénesis Genética , Humanos , Modelos Biológicos
17.
Sci Rep ; 6: 19274, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26786896

RESUMEN

Allen Brain Atlas (ABA) provides a valuable resource of spatial/temporal gene expressions in mammalian brains. Despite rich information extracted from this database, current analyses suffer from several limitations. First, most studies are either gene-centric or region-centric, thus are inadequate to capture the superposition of multiple spatial-temporal patterns. Second, standard tools of expression analysis such as matrix factorization can capture those patterns but do not explicitly incorporate spatial dependency. To overcome those limitations, we proposed a computational method to detect recurrent patterns in the spatial-temporal gene expression data of developing mouse brains. We demonstrated that regional distinction in brain development could be revealed by localized gene expression patterns. The patterns expressed in the forebrain, medullary and pontomedullary, and basal ganglia are enriched with genes involved in forebrain development, locomotory behavior, and dopamine metabolism respectively. In addition, the timing of global gene expression patterns reflects the general trends of molecular events in mouse brain development. Furthermore, we validated functional implications of the inferred patterns by showing genes sharing similar spatial-temporal expression patterns with Lhx2 exhibited differential expression in the embryonic forebrains of Lhx2 mutant mice. These analysis outcomes confirm the utility of recurrent expression patterns in studying brain development.


Asunto(s)
Encéfalo/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Transcriptoma , Animales , Análisis por Conglomerados , Biología Computacional , Regulación del Desarrollo de la Expresión Génica , Proteínas con Homeodominio LIM/deficiencia , Ratones , Ratones Noqueados , Factores de Transcripción/deficiencia
18.
Oncotarget ; 6(23): 19483-99, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26160836

RESUMEN

Lung adenocarcinoma possesses distinct patterns of EGFR/KRAS mutations between East Asian and Western, male and female patients. However, beyond the well-known EGFR/KRAS distinction, gender and ethnic specific molecular aberrations and their effects on prognosis remain largely unexplored. Association modules capture the dependency of an effector molecular aberration and target gene expressions. We established association modules from the copy number variation (CNV), DNA methylation and mRNA expression data of a Taiwanese female cohort. The inferred modules were validated in four external datasets of East Asian and Caucasian patients by examining the coherence of the target gene expressions and their associations with prognostic outcomes. Modules 1 (cis-acting effects with chromosome 7 CNV) and 3 (DNA methylations of UBIAD1 and VAV1) possessed significantly negative associations with survival times among two East Asian patient cohorts. Module 2 (cis-acting effects with chromosome 18 CNV) possessed significantly negative associations with survival times among the East Asian female subpopulation alone. By examining the genomic locations and functions of the target genes, we identified several putative effectors of the two cis-acting CNV modules: RAC1, EGFR, CDK5 and RALBP1. Furthermore, module 3 targets were enriched with genes involved in cell proliferation and division and hence were consistent with the negative associations with survival times. We demonstrated that association modules in lung adenocarcinoma with significant links of prognostic outcomes were ethnic and/or gender specific. This discovery has profound implications in diagnosis and treatment of lung adenocarcinoma and echoes the fundamental principles of the personalized medicine paradigm.


Asunto(s)
Adenocarcinoma/etnología , Adenocarcinoma/genética , Pueblo Asiatico/genética , Biomarcadores de Tumor/genética , Neoplasias Pulmonares/etnología , Neoplasias Pulmonares/genética , Adenocarcinoma/diagnóstico , Adenocarcinoma/mortalidad , Adenocarcinoma del Pulmón , Proliferación Celular/genética , Biología Computacional , Variaciones en el Número de Copia de ADN , Metilación de ADN , Bases de Datos Genéticas , Femenino , Dosificación de Gen , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Japón/epidemiología , Estimación de Kaplan-Meier , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/mortalidad , Modelos Genéticos , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Pronóstico , ARN Mensajero/genética , República de Corea/epidemiología , Medición de Riesgo , Factores de Riesgo , Factores Sexuales , Taiwán/epidemiología , Factores de Tiempo , Población Blanca/genética
19.
Stem Cell Reports ; 2(2): 189-204, 2014 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-24527393

RESUMEN

The mechanisms of transcriptional regulation underlying human primordial germ cell (PGC) differentiation are largely unknown. The transcriptional repressor Prdm1/Blimp-1 is known to play a critical role in controlling germ cell specification in mice. Here, we show that PRDM1 is expressed in developing human gonads and contributes to the determination of germline versus neural fate in early development. We show that knockdown of PRDM1 in human embryonic stem cells (hESCs) impairs germline potential and upregulates neural genes. Conversely, ectopic expression of PRDM1 in hESCs promotes the generation of cells that exhibit phenotypic and transcriptomic features of early PGCs. Furthermore, PRDM1 suppresses transcription of SOX2. Overexpression of SOX2 in hESCs under conditions favoring germline differentiation skews cell fate from the germline to the neural lineage. Collectively, our results demonstrate that PRDM1 serves as a molecular switch to modulate the divergence of neural or germline fates through repression of SOX2 during human development.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/citología , Células Germinativas/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción SOXB1/genética , Proteína Morfogenética Ósea 4/metabolismo , Diferenciación Celular/genética , Feto/embriología , Feto/metabolismo , Gónadas/embriología , Gónadas/metabolismo , Humanos , Modelos Biológicos , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Proteínas Represoras/genética , Proteína Wnt3A/metabolismo
20.
Per Med ; 11(7): 705-719, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29764056

RESUMEN

Cancer is an evolutionary process that is driven by mutation and selection. Tumors are genetically unstable, and research has shown that this is the most efficient way for cancers to evolve. Genetic instability leads to genetic heterogeneity and dynamic change within a single individual's tumor, in turn leading to therapeutic resistance. Cancer treatment has also evolved from an empirical science of killing dividing cells to the current era of 'personalized medicine', exquisitely targeting the molecular features of individual cancers. However, current personalized medicine regards a single individual's cancer as largely uniform and static. Moreover, from a strategic perspective, current personalized medicine thinks primarily of the immediate therapy selection. Ongoing research suggests that new, nonstandard personalized treatment strategies that plan further ahead and consider intratumoral heterogeneity and the evolving nature of cancer (due to genetic instability) may lead to the next level of therapeutic benefit beyond current personalized medicine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...