Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Med Phys ; 39(9): 5520-31, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22957619

RESUMEN

PURPOSE: This study demonstrates a means of implementing an adaptive statistical iterative reconstruction (ASiR™) technique for dose reduction in computed tomography (CT) while maintaining similar noise levels in the reconstructed image. The effects of image quality and noise texture were assessed at all implementation levels of ASiR™. Empirically derived dose reduction limits were established for ASiR™ for imaging of the trunk for a pediatric oncology population ranging from 1 yr old through adolescence∕adulthood. METHODS: Image quality was assessed using metrics established by the American College of Radiology (ACR) CT accreditation program. Each image quality metric was tested using the ACR CT phantom with 0%-100% ASiR™ blended with filtered back projection (FBP) reconstructed images. Additionally, the noise power spectrum (NPS) was calculated for three common reconstruction filters of the trunk. The empirically derived limitations on ASiR™ implementation for dose reduction were assessed using (1, 5, 10) yr old and adolescent∕adult anthropomorphic phantoms. To assess dose reduction limits, the phantoms were scanned in increments of increased noise index (decrementing mA using automatic tube current modulation) balanced with ASiR™ reconstruction to maintain noise equivalence of the 0% ASiR™ image. RESULTS: The ASiR™ algorithm did not produce any unfavorable effects on image quality as assessed by ACR criteria. Conversely, low-contrast resolution was found to improve due to the reduction of noise in the reconstructed images. NPS calculations demonstrated that images with lower frequency noise had lower noise variance and coarser graininess at progressively higher percentages of ASiR™ reconstruction; and in spite of the similar magnitudes of noise, the image reconstructed with 50% or more ASiR™ presented a more smoothed appearance than the pre-ASiR™ 100% FBP image. Finally, relative to non-ASiR™ images with 100% of standard dose across the pediatric phantom age spectrum, similar noise levels were obtained in the images at a dose reduction of 48% with 40% ASIR™ and a dose reduction of 82% with 100% ASIR™. CONCLUSIONS: The authors' work was conducted to identify the dose reduction limits of ASiR™ for a pediatric oncology population using automatic tube current modulation. Improvements in noise levels from ASiR™ reconstruction were adapted to provide lower radiation exposure (i.e., lower mA) instead of improved image quality. We have demonstrated for the image quality standards required at our institution, a maximum dose reduction of 82% can be achieved using 100% ASiR™; however, to negate changes in the appearance of reconstructed images using ASiR™ with a medium to low frequency noise preserving reconstruction filter (i.e., standard), 40% ASiR™ was implemented in our clinic for 42%-48% dose reduction at all pediatric ages without a visually perceptible change in image quality or image noise.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias/diagnóstico por imagen , Dosis de Radiación , Tomografía Computarizada por Rayos X/métodos , Niño , Preescolar , Humanos , Procesamiento de Imagen Asistido por Computador/instrumentación , Lactante , Fantasmas de Imagen , Tomografía Computarizada por Rayos X/instrumentación , Transistores Electrónicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA