Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-38496642

RESUMEN

The protein corona, a dynamic biomolecular layer that forms on nanoparticle (NP) surfaces upon exposure to biological fluids is emerging as a valuable diagnostic tool for improving plasma proteome coverage analyzed by liquid chromatography-mass spectrometry (LC-MS/MS). Here, we show that spiking small molecules, including metabolites, lipids, vitamins, and nutrients (namely, glucose, triglyceride, diglycerol, phosphatidylcholine, phosphatidylethanolamine, L-α-phosphatidylinositol, inosine 5'-monophosphate, and B complex), into plasma can induce diverse protein corona patterns on otherwise identical NPs, significantly enhancing the depth of plasma proteome profiling. The protein coronas on polystyrene NPs when exposed to plasma treated with an array of small molecules (n=10) allowed for detection of 1793 proteins marking an 8.25-fold increase in the number of quantified proteins compared to plasma alone (218 proteins) and a 2.63-fold increase relative to the untreated protein corona (681 proteins). Furthermore, we discovered that adding 1000 µg/ml phosphatidylcholine could singularly enable the detection of 897 proteins. At this specific concentration, phosphatidylcholine selectively depleted the four most abundant plasma proteins, including albumin, thus reducing the dynamic range of plasma proteome and enabling the detection of proteins with lower abundance. By employing an optimized data-independent acquisition (DIA) approach, the inclusion of phosphatidylcholine led to the detection of 1436 proteins in a single plasma sample. Our molecular dynamic results revealed that phosphatidylcholine interacts with albumin via hydrophobic interactions, h-bonds, and water-bridges. Addition of phosphatidylcholine also enabled the detection of 337 additional proteoforms compared to untreated protein corona using a top-down proteomics approach. These significant achievements are made utilizing only a single NP type and one small molecule to analyze a single plasma sample, setting a new standard in plasma proteome profiling. Given the critical role of plasma proteomics in biomarker discovery and disease monitoring, we anticipate widespread adoption of this methodology for identification and clinical translation of proteomic biomarkers into FDA approved diagnostics.

2.
Biophys J ; 122(23): 4582-4597, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-37924205

RESUMEN

The linkers of the nucleoskeleton and cytoskeleton (LINC) complex comprises Sad-1 and UNC-84 (SUN) and Klarsicht, ANC-1, SYNE homology (KASH) domain proteins, whose conserved interactions provide a physical coupling between the cytoskeleton and the nucleoskeleton, thereby mediating the transfer of physical forces across the nuclear envelope. The LINC complex can perform distinct cellular functions by pairing various KASH domain proteins with the same SUN domain protein. Recent studies have suggested a higher-order assembly of SUN and KASH instead of a more widely accepted linear trimer model for the LINC complex. In the present study, we use molecular dynamics simulations to investigate the mechanism of force transfer across the two proposed models of LINC complex assembly, namely the 3:3 linear trimer model and the 6:6 higher-order model. Employing steered molecular dynamics simulations with various structures using forces at different rates and directions, we examine the structural stability of the two models under various biologically relevant conditions. Our results suggest that both models can withstand and transfer significant levels of force while retaining their structural integrity. However, the force response of various SUN/KASH assemblies depend on the force direction and pulling rates. Slower pulling rates result in higher mean square fluctuations of the 3:3 assembly compared to the fast pulling. Interestingly, the 6:6 assembly tends to provide an additional range of motion flexibility and might be more advantageous to the structural rigidity and pliability of the nuclear envelope. These findings offer insights into how the SUN and KASH proteins maintain the structural integrity of the nuclear membrane.


Asunto(s)
Proteínas de la Membrana , Proteínas Nucleares , Proteínas Nucleares/metabolismo , Proteínas de la Membrana/química , Citoesqueleto/metabolismo , Matriz Nuclear/metabolismo , Membrana Nuclear/metabolismo
3.
J Cell Sci ; 134(12)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34152389

RESUMEN

Large protein complexes assemble at the nuclear envelope to transmit mechanical signals between the cytoskeleton and nucleoskeleton. These protein complexes are known as the linkers of the nucleoskeleton and cytoskeleton complexes (LINC complexes) and are formed by the interaction of SUN and KASH domain proteins in the nuclear envelope. Ample evidence suggests that SUN-KASH complexes form higher-order assemblies to withstand and transfer forces across the nuclear envelope. Herein, we present a review of recent studies over the past few years that have shed light on the mechanisms of SUN-KASH interactions, their higher order assembly, and the molecular mechanisms of force transfer across these complexes.


Asunto(s)
Membrana Nuclear , Proteínas Nucleares , Proteínas de la Membrana , Modelos Moleculares , Membrana Nuclear/genética , Matriz Nuclear , Proteínas Nucleares/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA