Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Intervalo de año de publicación
1.
Polymers (Basel) ; 15(16)2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37631478

RESUMEN

With the increasing environmental pollution caused by waste polymers, the conversion of polymer components in biomass into valuable products is of great significance for waste management and resource recovery. A two-stage microbial fuel cell (MFC) was used to treat furfural wastewater in this study. The maximum output voltage was 240-250 mV and the power generation time in an operation cycle was 286 h. The degradation efficiency of furfural reached 99-100% (furfural concentration at 300-3000 mg/L) and was slightly reduced to 91% at 7000 mg/L. In addition, the BOD/COD ratio of the furfural wastewater increased from 0.31 to 0.48 after MFC processing. The molecular analysis of the anodic bacterial isolates indicated that the phylogenetic bacterial mixture was dominated by five active anaerobic bacteria with a similarity percentage above 99% for each strain: Burkholderia (B. burdella), Clostridium sensu stricto (Cymbidaceae), Klebsiella (Klebsiella), Ethanoligenens (anaerobic genus), and Acidocella (anaerobic genus); the mixture exhibited good properties to carry out bioelectricity generation in the microbial fuel cell. This indicates that the MFC has effectively degraded furfural for pollutant removal and power generation and is a promising clean method to treat furfural pollution in industry wastewater.

2.
Polymers (Basel) ; 15(12)2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37376388

RESUMEN

The global shortage of freshwater supply has become an imminent problem. The high energy consumption of traditional desalination technology cannot meet the demand for sustainable energy development. Therefore, exploring new energy sources to obtain pure water has become one of the effective ways to solve the freshwater resource crisis. In recent years, solar steam technology which utilizes solar energy as the sole input source for photothermal conversion has shown to be sustainable, low-cost, and environmentally friendly, providing a viable low-carbon solution for freshwater supply. This review summarizes the latest developments in solar steam generators. The working principle of steam technology and the types of heating systems are described. The photothermal conversion mechanisms of different materials are illustrated. Emphasis is placed on describing strategies to optimize light absorption and improve steam efficiency from material properties to structural design. Finally, challenges in the development of solar steam devices are pointed out, aiming to provide new ideas for the development of solar steam devices and alleviate the shortage of freshwater resources.

3.
Appl Microbiol Biotechnol ; 103(19): 7997-8008, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31414160

RESUMEN

The synthesis of rhamnosylated compounds has gained great importance since these compounds have potential therapeutic applications. The enzymatic approaches for glycosylation of bioactive molecules have been well developed; however, the enzymatic rhamnosylation has been largely hindered by lacking of the glycosyl donor for rhamnosyltransferases. Here, we employed an α-L-rhamnosidase from Alternaria sp. L1 (RhaL1) to perform one-step rhamnosylation of anticancer drugs, including 2'-deoxy-5-fluorouridine (FUDR), cytosine arabinoside (Ara C), and hydroxyurea (Hydrea). The key synthesis conditions including substrate concentrations and reaction time were carefully optimized, and the maximum yields of each rhamnosylated drugs were 57.7 mmol for rhamnosylated Ara C, 68.6 mmol for rhamnosylated Hydrea, and 42.2 mmol for rhamnosylated FUDR. It is worth pointing out that these rhamnosylated drugs exhibit little cytotoxic effects on cancer cells, but could efficiently restore cytotoxic activity when incubated with exogenous α-L-rhamnosidase, suggesting their potential applications in the enzyme-activated prodrug system. To evaluate the cancer-targeting ability of rhamnose moiety, the rhamnose-conjugated fluorescence dye rhodamine B (Rha-RhB) was constructed. The fluorescence probe Rha-RhB displayed much higher cell affinity and cellular internalization rate of oral cancer cell KB and breast cancer cell MDA-MB-231 than that of the normal epithelial cells MCF 10A, suggesting that the rhamnose moiety could mediate the specific internalization of rhamnosylated compounds into cancer cells, which greatly facilitated their applications for cancer-targeting drug delivery.


Asunto(s)
Alternaria/enzimología , Antineoplásicos/metabolismo , Glicósido Hidrolasas/metabolismo , Terapia Molecular Dirigida/métodos , Neoplasias/tratamiento farmacológico , Profármacos/metabolismo , Ramnosa/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Citarabina/metabolismo , Citarabina/farmacología , Floxuridina/metabolismo , Floxuridina/farmacología , Humanos , Hidroxiurea/metabolismo , Hidroxiurea/farmacología , Profármacos/farmacología
4.
Bioresour Technol ; 257: 201-209, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29501953

RESUMEN

Toluene has high toxicity and mutagenicity, thus, the removal of toluene from air is necessary. In this study, two biotrickling filters (BTFs) were constructed and packed with conductive packing material to treat toluene waste gas. BTF-O exhibited good toluene removal performance even under high toluene inlet concentration, and over 80% of removal efficiency was observed. The elimination capacity reached 120.1 g/m3 h corresponding to an inlet concentration of 2.259 g/m3 under 61.5 s of empty bed retention time. During toluene biodegradation, the output voltage was observed in BTF-O and BTF-E, moreover BTF-E also showed slight power storage capacity. The applied voltage inhibited toluene removal and affected the bacterial community. The predominant bacterial genera in BTF-O were Acidovorax, Rhodococcus, Hydrogenophaga, Brevundimonas, Arthrobacter, Pseudoxanthomonas, Devosia, Gemmobacter, Rhizobium, Dokdonella and Pseudomonas. Genera Xanthobacter and Pelomonas accounted for the main bacterial community in BTF-E.


Asunto(s)
Biodegradación Ambiental , Tolueno , Contaminantes Atmosféricos , Bacterias , Reactores Biológicos , Filtración
5.
Bioresour Technol ; 239: 7-16, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28500890

RESUMEN

A laboratory-scale biotrickling filter combined with a magnetic field (MF-BTF) and a single BTF (S-BTF) were set up to treat trichloroethylene (TCE) gas. The influences of phenol alone and NaAc-phenol as co-substrates and different MF intensities were investigated. At low MF intensity, MF-BTF displayed better performance with 0.20g/L of phenol, 53.6-337.1mg/m3 of TCE, and empty bed residence times of 202.5s. The performances followed the order MF-BTF (60.0mT)>MF-BTF (30.0mT)>S-BTF (0mT)>MF-BTF (130.0mT), and the removal efficiencies (REs) and maximum elimination capacities (ECs) corresponded to: 92.2%-45.5%, 2656.8mg/m3h; 89.8%-37.2%, 2169.1mg/m3h; 89.8%-29.8%, 1967.7mg/m3h; 76.0%-20.8%, 1697.1mg/m3h, respectively. High-throughput sequencing indicated that the bacterial diversity was lower, whereas the relative abundances of Acinetobacter, Chryseobacterium, and Acidovorax were higher in MF-BTF. Results confirmed that a proper MF could improve TCE removal performance in BTF.


Asunto(s)
Reactores Biológicos , Campos Magnéticos , Tricloroetileno , Biodegradación Ambiental , Filtración , Luz
6.
Molecules ; 22(6)2017 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-28545250

RESUMEN

Ginsenoside is the most important secondary metabolite of ginseng. Natural sources of wild ginseng have been overexploited. Although root culture could reduce the length of the growth cycle of ginseng, the number of ginsenosides is fewer and their contents are lower in adventitious roots of ginseng than that in ginseng cultivated in the field. In this study, we investigated the effects of endophytic bacterial elicitors on biomass and ginsenoside production in adventitious roots cultures of Panax ginseng. Endophyte LB 5-3 as an elicitor could increase biomass and ginsenoside accumulation in ginseng adventitious root culture. After 6 days elicitation with a 10.0 mL of strain LB 5-3, the content of total ginsenoside was 2.026 mg g-1 which was four times more than that in unchallenged roots. The combination of methyl jasmonate and strain LB 5-3 had a negative effect on ginseng adventitious root growth and ginsenoside production. The genomic DNA of strain LB 5-3 was sequenced, and was found to be most closely related to Bacillus altitudinis (KX230132.1). The challenged ginseng adventitious root extracts exerted inhibitory effect against the HepG2 cells, which IC50 value was 0.94 mg mL-1.


Asunto(s)
Bacillus/metabolismo , Ginsenósidos/metabolismo , Panax/metabolismo , Raíces de Plantas/metabolismo , Acetatos/metabolismo , Reactores Biológicos , Ciclopentanos/metabolismo , Oxilipinas/metabolismo
7.
Electron. j. biotechnol ; 26: 20-26, Mar. 2017. ilus, graf, tab
Artículo en Inglés | LILACS | ID: biblio-1009753

RESUMEN

Background: Ginsenoside is the most important secondary metabolite in ginseng. Natural sources of wild ginseng have been overexploited. Although root culture can reduce the length of the growth cycle of ginseng, the number of species of ginsenosides is reduced and their contents are lower in the adventitious roots of ginseng than in the roots of ginseng cultivated in the field. Results: In this study, 147 strains of ß-glucosidase-producing microorganisms were isolated from soil. Of these, strain K35 showed excellent activity for converting major ginsenosides into rare ginsenosides, and a NCBI BLAST of its 16S rDNA gene sequence showed that it was most closely related to Penicillium sp. (HQ608083.1). Strain K35 was used to ferment the adventitious root extract, and the fermentation products were analyzed by high-performance liquid chromatography. The results showed that the content of the rare ginsenoside CK was 0.253 mg mL-1 under the optimal converting conditions of 9 d of fermentation at pH 7.0 in LL medium, which was significantly higher than that in the adventitious roots of ginseng. Conclusion: These findings may not only solve the problem of low productivity of metabolite in ginseng root culture but may also result in the development of a new valuable method of manufacturing ginsenoside CK.


Asunto(s)
beta-Glucosidasa/metabolismo , Raíces de Plantas/metabolismo , Ginsenósidos/metabolismo , Panax/metabolismo , Penicillium , Biotransformación , Cromatografía Líquida de Alta Presión , Raíces de Plantas/química , Reactores Biológicos , Ginsenósidos/aislamiento & purificación , Fermentación , Panax/crecimiento & desarrollo , Panax/química
8.
Appl Microbiol Biotechnol ; 100(24): 10385-10394, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27352363

RESUMEN

The α-L-rhamnosidase catalyzes the hydrolytic release of rhamnose from polysaccharides and glycosides and is widely used due to its applications in a variety of industrial processes. Our previous work reported that a wild-type α-L-rhamnosidase (RhaL1) from Alternaria sp. L1 could synthesize rhamnose-containing chemicals (RCCs) though reverse hydrolysis reaction with inexpensive rhamnose as glycosyl donor. To enhance the yield of reverse hydrolysis reaction and to determine the amino acid residues essential for the catalytic activity of RhaL1, site-directed mutagenesis of 11 residues was performed in this study. Through rationally designed mutations, the critical amino acid residues which may form direct or solvent-mediated hydrogen bonds with donor rhamnose (Asp252, Asp257, Asp264, Glu530, Arg548, His553, and Trp555) and may form the hydrophobic pocket in stabilizing donor (Trp261, Tyr302, Tyr316, and Trp369) in active-site of RhaL1 were analyzed, and three positive mutants (W261Y, Y302F, and Y316F) with improved product yield stood out. From the three positive variants, mutant W261Y accelerated the reverse hydrolysis with a prominent increase (43.7 %) in relative yield compared to the wild-type enzyme. Based on the 3D structural modeling, we supposed that the improved yield of mutant W261Y is due to the adjustment of the spatial position of the putative catalytic acid residue Asp257. Mutant W261Y also exhibited a shift in the pH-activity profile in hydrolysis reaction, indicating that introducing of a polar residue in the active site cavity may affect the catalysis behavior of the enzyme.


Asunto(s)
Alternaria/enzimología , Glicósido Hidrolasas/metabolismo , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/metabolismo , Dominio Catalítico , Glicósido Hidrolasas/química , Glicósido Hidrolasas/genética , Glicósidos/metabolismo , Hidrólisis , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Polisacáridos/metabolismo , Ramnosa/metabolismo
9.
Bioresour Technol ; 209: 237-45, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26970927

RESUMEN

Methyl acrylate is a widely used raw chemical materials and it is toxic in humans. In order to treat the methyl acrylate waste gas, a 3-layer BTF packed with ceramic particles and immobilized with activated sludge was set up. The BTF exhibited excellent removal efficiency that no methyl acrylate could be detected when EBRT was larger than 266s and inlet concentration was lower than 0.19g/m(3). The 1st layer performed the best at fixed inlet concentration of 0.42g/m(3). PCR combined with DGGE was performed to detect the differences in different layers of the BTF. Phylum Proteobacteria (e.g. α-, ß-, γ-, δ-) was predominantly represented in the bacterial community, followed by Actinobacteria and Firmicutes. Desulfovibrio gigas, Variovorax paradoxus, Dokdonella koreensis, Pseudoxanthomonas suwonensis, Azorhizobium caulinodans, Hyphomicrobium denitrificans, Hyphomicrobium sp. and Comamonas testosteroni formed the bacteria community to treat methyl acrylate waste gas in the BTF.


Asunto(s)
Acrilatos/análisis , Bacterias/metabolismo , Contaminantes Ambientales/análisis , Administración de Residuos/métodos , Acrilatos/química , Bacterias/clasificación , Bacterias/genética , Biopelículas , Cerámica , Contaminantes Ambientales/química , Filtración/instrumentación , Filtración/métodos , Humanos , Aguas del Alcantarillado/microbiología , Administración de Residuos/instrumentación
10.
PLoS One ; 10(10): e0140531, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26505759

RESUMEN

Rhamnose containing chemicals (RCCs) are widely occurred in plants and bacteria and are known to possess important bioactivities. However, few of them were available using the enzymatic synthesis method because of the scarcity of the α-L-rhamnosidases with wide acceptor specificity. In this work, an α-L-rhamnosidase from Alternaria sp. L1 was expressed in Pichia pastroris strain GS115. The recombinant enzyme was purified and used to synthesize novel RCCs through reverse hydrolysis in the presence of rhamnose as donor and mannitol, fructose or esculin as acceptors. The effects of initial substrate concentrations, reaction time, and temperature on RCC yields were investigated in detail when using mannitol as the acceptor. The mannitol derivative achieved a maximal yield of 36.1% by incubation of the enzyme with 0.4 M L-rhamnose and 0.2 M mannitol in pH 6.5 buffers at 55°C for 48 h. In identical conditions except for the initial acceptor concentrations, the maximal yields of fructose and esculin derivatives reached 11.9% and 17.9% respectively. The structures of the three derivatives were identified to be α-L-rhamnopyranosyl-(1→6')-D-mannitol, α-L-rhamnopyranosyl-(1→1')-ß-D-fructopyranose, and 6,7-dihydroxycoumarin α-L-rhamnopyranosyl-(1→6')-ß-D-glucopyranoside by ESI-MS and NMR spectroscopy. The high glycosylation efficiency as well as the broad acceptor specificity of this enzyme makes it a powerful tool for the synthesis of novel rhamnosyl glycosides.


Asunto(s)
Alternaria/enzimología , Glicósido Hidrolasas/genética , Pichia/genética , Ramnosa/biosíntesis , Glicósido Hidrolasas/química , Glicósidos/química , Glicosilación , Hidrólisis , Resonancia Magnética Nuclear Biomolecular , Ramnosa/química , Ramnosa/genética , Especificidad por Sustrato
11.
World J Microbiol Biotechnol ; 30(3): 1019-1025, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24122127

RESUMEN

A total of 58 isolates of ß-glucosidase-producing microorganisms were isolated from soil around the wild ginseng roots under forest using Esculin-R2A agar. Among these isolates, strain GS33 showed a strong ability to convert ginsenosides Rb1, Rb2, Rc, and Rd into F2, Rg3, C-K, and convert ginsenoside Rg1 into Rh1, and F1. Fermented ginseng products can inhibit ES-2 cells growth and the IC50 value was 0.73 mg ml⁻¹. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain GS33 belongs to the genus Penicillium and is most closely related to Penicillium simplicissimum (99 %).


Asunto(s)
Antineoplásicos/metabolismo , Panax/química , Penicillium/metabolismo , Extractos Vegetales/metabolismo , Línea Celular Tumoral , Análisis por Conglomerados , ADN de Hongos/química , ADN de Hongos/genética , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , Femenino , Fermentación , Ginsenósidos/metabolismo , Humanos , Concentración 50 Inhibidora , Panax/microbiología , Penicillium/clasificación , Penicillium/aislamiento & purificación , Filogenia , Raíces de Plantas/microbiología , Análisis de Secuencia de ADN , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA