Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
1.
J Environ Manage ; 366: 121766, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38986373

RESUMEN

Based on city-level panel data spanning 2008 to 2021, this study investigates the impact of government environmental attention (GEA) on green total factor productivity (GTFP). The findings suggest that increased GEA substantially enhances the growth of GTFP. After conducting robustness and endogeneity tests, the study's results consistently show reliability and robustness. Further analysis elucidates several mechanisms through which GEA influences GTFP, including fostering green technology innovation, optimizing resource allocation, and promoting upgrades in industrial structure. Heterogeneity analyses reveal that the impact of GEA on GTFP is notably pronounced in eastern cities, as well as in cities characterized by low resource dependency, mature industrial development, and high market competition. Conversely, the influence of GEA on GTFP is less discernible in cities prioritizing economic development goals, possibly due to differing policy orientations and resource allocation strategies. This study offers a novel perspective on understanding how GEA shape green development and provides empirical support for policy formulation.

2.
Int J Colorectal Dis ; 39(1): 99, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926205

RESUMEN

PURPOSE: Achieving a pathologic complete response (pCR) after neoadjuvant chemoradiotherapy (NCRT) remains a challenge for most patients with rectal cancer. Exploring the potential of combining NCRT with immunotherapy or targeted therapy for those achieving a partial response (PR) offers a promising avenue to enhance treatment efficacy. This study investigated the impact of NCRT on the tumor microenvironment in locally advanced rectal cancer (LARC) patients who exhibited a PR. METHODS: This was a retrospective, observational study. Five patients demonstrating a PR after neoadjuvant treatment for LARC were enrolled in the study. Biopsy samples before treatment and resected specimens after treatment were stained with a panel of 26 antibodies targeting various immune and tumor-related markers, each labeled with distinct metal tags. The labeled samples were then analyzed using the Hyperion imaging system. RESULTS: Heterogeneity within the tumor microenvironment was observed both before and after NCRT. Notably, tumor-associated macrophages, CD4 + T cells, CD8 + T cells, CD56 + natural killer cells, tumor-associated neutrophils, cytokeratin, and E-cadherin exhibited slight increase in abundance within the tumor microenvironment following treatment (change ratios = 0.78, 0.2, 0.27, 0.32, 0.17, 0.46, 0.32, respectively). Conversely, the number of CD14 + monocytes, CD19 + B cells, CD45 + CD4 + T cells, collagen I, α-smooth muscle actin, vimentin, and ß-catenin proteins displayed significant decreases post-treatment (change ratios = 1.73, 1.92, 1.52, 1.25, 1.52, 1.12, 2.66, respectively). Meanwhile, Foxp3 + regulatory cells demonstrated no significant change (change ratio = 0.001). CONCLUSIONS: NCRT has diverse effects on various components of the tumor microenvironment in LARC patients who achieve a PR after treatment. Leveraging combination therapies may optimize treatment outcomes in this patient population.


Asunto(s)
Terapia Neoadyuvante , Neoplasias del Recto , Microambiente Tumoral , Humanos , Neoplasias del Recto/terapia , Neoplasias del Recto/patología , Neoplasias del Recto/tratamiento farmacológico , Masculino , Femenino , Persona de Mediana Edad , Anciano , Quimioradioterapia , Resultado del Tratamiento , Estudios Retrospectivos
3.
FASEB J ; 38(10): e23705, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38805171

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies, with a notoriously dismal prognosis. As a competitive inhibitor of DNA synthesis, gemcitabine is the cornerstone drug for treating PDAC at all stages. The therapeutic effect of gemcitabine, however, is often hindered by drug resistance, and the underlying mechanisms remain largely unknown. It is unclear whether their response to chemotherapeutics is regulated by endocrine regulators, despite the association between PDAC risk and endocrine deregulation. Here, we show that prolactin receptor (PRLR) synergizes with gemcitabine in both in vitro and in vivo treatment of PDAC. Interestingly, PRLR promotes the expression of miR-4763-3p and miR-3663-5p, two novel miRNAs whose functions are unknown. Furthermore, the analysis of transcriptome sequencing data of tumors from lactating mouse models enriches the PPP pathway, a multifunctional metabolic pathway. In addition to providing energy, the PPP pathway mainly provides a variety of raw materials for anabolism. We demonstrate that two key enzymes of the pentose phosphate pathway (PPP), G6PD and TKT, are directly targeted by miR-4763-3p and miR-3663-5p. Notably, miR-4763-3p and miR-3663-5p diminish the nucleotide synthesis of the PPP pathway, thereby increasing gemcitabine sensitivity. As a result, PRLR harnesses these two miRNAs to suppress PPP and nucleotide synthesis, subsequently elevating the gemcitabine sensitivity of PDAC cells. Also, PDAC tissues and tumors from LSL-KrasG12D/+, LSL-Trp53R172H/+, and PDX1-cre (KPC) mice exhibit downregulation of PRLR. Bisulfite sequencing of PDAC tissues revealed that PRLR downregulation is due to epigenetic methylation. In this study, we show for the first time that the endocrine receptor PRLR improves the effects of gemcitabine by boosting two new miRNAs that block the PPP pathway and nucleotide synthesis by inhibiting two essential enzymes concurrently. The PRLR-miRNAs-PPP axis may serve as a possible therapeutic target to supplement chemotherapy advantages in PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Desoxicitidina , Gemcitabina , Glucosafosfato Deshidrogenasa , MicroARNs , Neoplasias Pancreáticas , Receptores de Prolactina , Animales , Femenino , Humanos , Ratones , Antimetabolitos Antineoplásicos/farmacología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glucosafosfato Deshidrogenasa/metabolismo , Glucosafosfato Deshidrogenasa/genética , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Receptores de Prolactina/metabolismo , Receptores de Prolactina/genética , Ratones Desnudos
4.
Food Sci Nutr ; 12(4): 2488-2501, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38628190

RESUMEN

This study aimed to investigate the beneficial effects of probiotic yogurt on lipid metabolism and gut microbiota in metabolic-related fatty liver disease (MAFLD) golden hamsters fed on a high-fat diet (HFD). The results demonstrated that probiotic yogurt significantly reversed the adverse effects caused by HFD, such as body and liver weight gain, liver steatosis and damage, sterol deposition, and oxidative stress after 8 weeks of intervention. qRT-PCR analysis showed that golden hamsters fed HFD had upregulated genes related to adipogenesis, increased free fatty acid infiltration, and downregulated genes related to lipolysis and very low-density lipoprotein secretion. Probiotic yogurt supplements significantly inhibited HFD-induced changes in the expression of lipid metabolism-related genes. Furthermore, 16S rRNA gene sequencing of the intestinal content microbiota suggested that probiotic yogurt changed the diversity and composition of the gut microbiota in HFD-fed hamsters. Probiotic yogurt decreased the ratio of the phyla Firmicutes/Bacteroidetes, the relative abundance of the LPS-producing genus Desulfovibrio, and bacteria involved in lipid metabolism, whereas it increased the relative abundance of short-chain fatty acids producing bacteria in HFD-fed hamsters. Predictive functional analysis of the microbial community showed that probiotic yogurt-modified genes involved in LPS biosynthesis and lipid metabolism. In summary, these findings support the possibility that probiotic yogurt significantly improves HFD-induced metabolic disorders through modulating intestinal microflora and lipid metabolism and effectively regulating the occurrence and development of MAFLD. Therefore, probiotic yogurt supplementation may serve as an effective nutrition strategy for the treatment of patients with MAFLD clinically.

5.
Oncogenesis ; 13(1): 10, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424455

RESUMEN

Endocrine receptors play an essential role in tumor metabolic reprogramming and represent a promising therapeutic avenue in pancreatic ductal adenocarcinoma (PDAC). PDAC is characterized by a nutrient-deprived microenvironment. To meet their ascendant energy demands, cancer cells can internalize extracellular proteins via macropinocytosis. However, the roles of endocrine receptors in macropinocytosis are not clear. In this study, we found that progesterone receptor (PGR), a steroid-responsive nuclear receptor, is highly expressed in PDAC tissues obtained from both patients and transgenic LSL-KrasG12D/+; LSL-Trp53R172H/+; PDX1-cre (KPC) mice. Moreover, PGR knockdown restrained PDAC cell survival and tumor growth both in vitro and in vivo. Genetic and pharmacological PGR inhibition resulted in a marked attenuation of macropinocytosis in PDAC cells and subcutaneous tumor models, indicating the involvement of this receptor in macropinocytosis regulation. Mechanistically, PGR upregulated CDC42, a critical regulator in macropinocytosis, through PGR-mediated transcriptional activation. These data deepen the understanding of how the endocrine system influences tumor progression via a non-classical pathway and provide a novel therapeutic option for patients with PDAC.

6.
Theor Appl Genet ; 137(3): 54, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38381205

RESUMEN

KEY MESSAGE: Integrated phenomics, ionomics, genomics, transcriptomics, and functional analyses present novel insights into the role of pectin demethylation-mediated cell wall Na+ retention in positively regulating salt tolerance in oilseed rape. Genetic variations in salt stress tolerance identified in rapeseed genotypes highlight the complicated regulatory mechanisms. Westar is ubiquitously used as a transgenic receptor cultivar, while ZS11 is widely grown as a high-production and good-quality cultivar. In this study, Westar was found to outperform ZS11 under salt stress. Through cell component isolation, non-invasive micro-test, X-ray energy spectrum analysis, and ionomic profile characterization, pectin demethylation-mediated cell wall Na+ retention was proposed to be a major regulator responsible for differential salt tolerance between Westar and ZS11. Integrated analyses of genome-wide DNA variations, differential expression profiling, and gene co-expression networks identified BnaC9.PME47, encoding a pectin methylesterase, as a positive regulator conferring salt tolerance in rapeseed. BnaC9.PME47, located in two reported QTL regions for salt tolerance, was strongly induced by salt stress and localized on the cell wall. Natural variation of the promoter regions conferred higher expression of BnaC9.PME47 in Westar than in several salt-sensitive rapeseed genotypes. Loss of function of AtPME47 resulted in the hypersensitivity of Arabidopsis plants to salt stress. The integrated multiomics analyses revealed novel insights into pectin demethylation-mediated cell wall Na+ retention in regulating differential salt tolerance in allotetraploid rapeseed genotypes. Furthermore, these analyses have provided key information regarding the rapid dissection of quantitative trait genes responsible for nutrient stress tolerance in plant species with complex genomes.


Asunto(s)
Arabidopsis , Brassica napus , Brassica rapa , Tolerancia a la Sal/genética , Brassica napus/genética , Pectinas , Estrés Salino , Pared Celular , Desmetilación
7.
Research (Wash D C) ; 7: 0300, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38314086

RESUMEN

Ferroptosis, a nonapoptotic form of cell death, is an emerging potential therapeutic target for various diseases, including cancer. However, the role of ferroptosis in pancreatic cancer remains poorly understood. Pancreatic ductal adenocarcinoma (PDAC) is characterized by a poor prognosis and chemotherapy resistance, attributed to its high Kirsten rats arcomaviral oncogene homolog mutation rate and severe nutritional deficits resulting from a dense stroma. Several studies have linked rat sarcoma (RAS) mutations to ferroptosis, suggesting that inducing ferroptosis may be an effective strategy against oncogenic RAS-bearing tumors. We investigated the role of Family With Sequence Similarity 60 Member A (FAM60A) in this study, a protein closely associated with a poor prognosis and highly expressed in PDAC and tumor tissue from KrasG12D/+;Trp53R172H/+; Pdx1-Cre mice, in regulating ferroptosis, tumor growth, and gemcitabine sensitivity in vitro and in vivo. Our results demonstrate that FAM60A regulates 3 essential metabolic enzymes, ACSL1/4 and GPX4, to protect PDAC cells from ferroptosis. Furthermore, we found that YY1 transcriptionally regulates FAM60A expression by promoting its transcription, and the Hippo-YY1 pathway is restricted in the low-amino-acid milieu in the context of nutrient deprivation, leading to downstream suppression of peroxisome proliferator-activated receptor and ACSL1/4 and activation of GPX4 pathways. Importantly, FAM60A knockdown sensitized PDAC cells to gemcitabine treatment. A new understanding of FAM60A transcriptional regulation pattern in PDAC and its dual function in ferroptosis reliever and chemotherapy resistance is provided by our study. Targeting FAM60A may therefore offer a promising therapeutic approach for PDAC by simultaneously addressing 2 major features of the disease (high RAS mutation rate and tumor microenvironment nutrient deficiency) and preventing tumor cell metabolic adaptation.

8.
Cell Prolif ; 57(6): e13603, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38228366

RESUMEN

Breast cancer has overtaken lung cancer as the number one cancer worldwide. Paclitaxel (PTX) is a widely used first-line anti-cancer drug, but it is not very effective in clinical breast cancer therapy. It has been reported that triptolide (TPL) can enhance the anticancer effect of paclitaxel, and better synergistic therapeutic effects are seen with concomitant administration of PTX and TPL. In this study, we developed pH-responsive polymeric micelles for co-delivery of PTX and TPL, which disassembling in acidic tumour microenvironments to target drug release and effectively kill breast cancer cells. Firstly, we synthesized amphiphilic copolymer mPEG2000-PBAE through Michael addition reaction, confirmed by various characterizations. Polymer micelles loaded with TPL and PTX (TPL/PTX-PMs) were prepared by the thin film dispersion method. The average particle size of TPL/PTX-PMs was 97.29 ± 1.63 nm, with PDI of 0.237 ± 0.003 and Zeta potential of 9.57 ± 0.80 mV, LC% was 6.19 ± 0.21%, EE% was 88.67 ± 3.06%. Carrier material biocompatibility and loaded micelle cytotoxicity were assessed using the CCK-8 method, demonstrating excellent biocompatibility. Under the same drug concentration, TPL/PTX-PMs were the most toxic to tumour cells and had the strongest proliferation inhibitory effect. Cellular uptake assays revealed that TPL/PTX-PMs significantly increased intracellular drug concentration and enhanced antitumor activity. Overall, pH-responsive micellar co-delivery of TPL and PTX is a promising approach for breast cancer therapy.


Asunto(s)
Neoplasias de la Mama , Diterpenos , Compuestos Epoxi , Micelas , Paclitaxel , Fenantrenos , Polímeros , Diterpenos/farmacología , Diterpenos/química , Diterpenos/administración & dosificación , Compuestos Epoxi/química , Fenantrenos/química , Fenantrenos/farmacología , Fenantrenos/administración & dosificación , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Paclitaxel/farmacología , Paclitaxel/administración & dosificación , Paclitaxel/uso terapéutico , Paclitaxel/química , Concentración de Iones de Hidrógeno , Femenino , Polímeros/química , Portadores de Fármacos/química , Células MCF-7 , Liberación de Fármacos , Línea Celular Tumoral , Polietilenglicoles/química , Supervivencia Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos
9.
Reprod Sci ; 31(7): 1868-1880, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38263477

RESUMEN

Ovarian cancer (OV) is a highly aggressive malignancy with poor prognosis due to recurrence and drug resistance. Therefore, it is imperative to investigate the key molecular mechanisms underlying OV progression in order to develop promising diagnostic and therapeutic interventions. Although the importance of hematological and neurological expressed 1 (HN1) protein in hemopoietic cell and neurological development has been well-established, its function in cancer, particularly in OV, remains uncertain. In this study, we compared the expression of HN1 in ovarian cancers and para-tumor tissues and predicted potential related signaling pathways through enrichment analysis. In order to confirm the role of HN1 in vitro and vivo, we carried out a variety of experiments including bioinformation analysis, colony formation, flow cytometry analysis, and subcutaneous tumor models. The results demonstrated that HN1 was upregulated in OV and was negatively associated with clinical prognosis. Moreover, we observed that HN1 enhances cell proliferation, migration, and drug resistance, while suppressing apoptosis in OV cells. Notably, we discovered that HN1 functions as a novel regulator of mTOR pathways. Our findings suggest that HN1-mediated mTOR regulation facilitates OV advancement and targeting HN1 could provide a promising therapeutic approach for clinical OV treatment.


Asunto(s)
Proliferación Celular , Neoplasias Ováricas , Transducción de Señal , Serina-Treonina Quinasas TOR , Femenino , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Humanos , Serina-Treonina Quinasas TOR/metabolismo , Línea Celular Tumoral , Animales , Progresión de la Enfermedad , Movimiento Celular , Fucosiltransferasas/metabolismo , Fucosiltransferasas/genética , Apoptosis/fisiología , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Ratones , Ratones Desnudos
10.
BMC Genomics ; 25(1): 37, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38184538

RESUMEN

BACKGROUND: Citrus is one of the most valuable fruits worldwide and an economic pillar industry in southern China. Nevertheless, it frequently suffers from undesirable environmental stresses during the growth cycle, which severely restricts the growth, development and yield of citrus. In plants, the growth-regulating factor (GRF) family of transcription factors (TF) is extensively distributed and plays an vital part in plant growth and development, hormone response, as well as stress adaptation. However, the systematic identification and functional analysis of GRF TFs in citrus have not been reported. RESULTS: Here, a genome-wide identification of GRF TFs was performed in Citrus sinensis, 9 members of CsGRFs were systematically identified and discovered to be scattered throughout 5 chromosomes. Subsequently, physical and chemical properties, phylogenetic relationships, structural characteristics, gene duplication events, collinearity and cis-elements of promoter were elaborately analyzed. In particular, the expression patterns of the CsGRF genes in response to multiple phytohormone and abiotic stress treatments were investigated. Predicated on this result, CsGRF04, which exhibited the most differential expression pattern under multiple phytohormone and abiotic stress treatments was screened out. Virus-induced gene silencing (VIGS) technology was utilized to obtain gene silenced plants for CsGRF04 successfully. After the three stress treatments of high salinity, low temperature and drought, the CsGRF04-VIGS lines showed significantly reduced resistance to high salinity and low temperature stresses, but extremely increased resistance to drought stress. CONCLUSIONS: Taken together, our findings systematically analyzed the genomic characterization of GRF family in Citrus sinensis, and excavated a CsGRF04 with potential functions under multiple abiotic stresses. Our study lay a foundation for further study on the function of CsGRFs in abiotic stress and hormone signaling response.


Asunto(s)
Citrus sinensis , Citrus , Citrus sinensis/genética , Filogenia , Reguladores del Crecimiento de las Plantas/farmacología , Péptidos y Proteínas de Señalización Intercelular , Hormonas
11.
J Agric Food Chem ; 72(4): 2381-2396, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38232380

RESUMEN

Variations in the resistance to potassium (K) deficiency among rapeseed genotypes emphasize complicated regulatory mechanisms. In this study, a low-K-sensitivity accession (L49) responded to K deficiency with smaller biomasses, severe leaf chlorosis, weaker photosynthesis ability, and deformed stomata morphology compared to a low-K resistant accession (H280). H280 accumulated more K+ than L49 under low K. Whole-genome resequencing (WGS) revealed a total of 5,538,622 single nucleotide polymorphisms (SNPs) and 859,184 insertions/deletions (InDels) between H280 and L49. RNA-seq identified more differentially expressed K+ transporter genes with higher expression in H280 than in L49 under K deficiency. Based on the K+ profiles, differential expression profiling, weighted gene coexpression network analysis, and WGS data between H280 and L49, BnaC4.AKT1 was proposed to be mainly responsible for root K absorption-mediated low K resistance. BnaC4.AKT1 was expressed preferentially in the roots and localized on the plasma membrane. An SNP and an InDel found in the promoter region of BnaC4.AKT1 were proposed to be responsible for its differential expression between rapeseed genotypes. This study identified a gene resource for improving low-K resistance. It also facilitates an integrated knowledge of the differential physiological and transcriptional responses to K deficiency in rapeseed genotypes.


Asunto(s)
Brassica napus , Brassica rapa , Deficiencia de Potasio , Brassica napus/genética , Brassica napus/metabolismo , Deficiencia de Potasio/genética , Brassica rapa/metabolismo , Genotipo , Genómica , Regulación de la Expresión Génica de las Plantas
12.
World J Pediatr ; 20(2): 165-172, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37676611

RESUMEN

BACKGROUND: Necrotizing enterocolitis (NEC) is the most common severe gastrointestinal emergency in neonates. We designed this study to identify the pathogenic microorganisms of NEC in the microbiota of the small intestine of neonates. METHODS: Using the 16S ribosomal DNA (rDNA) sequencing method, we compared and analyzed the structure and diversity of microbiotas in the intestinal feces of different groups of neonates: patients undergoing jejunostomy to treat NEC (NP group), neonates undergoing jejunostomy to treat other conditions (NN group), and neonates with NEC undergoing conservative treatment (NC group). We took intestinal feces and saliva samples from patients at different time points. RESULTS: The beta diversities of the NP, NN, and NC groups were all similar. When comparing the beta diversities between different time points in the NP group, we found similar beta diversities at time points E1 to E3 but significant differences between the E2-E3 and E4 time points: the abundances of Klebsiella and Enterococcus (Proteobacteria) were higher at the E1-E3 time points; the abundance of Escherichia-Shigella (Proteobacteria) increased at the E2 time point, and the abundance of Klebsiella decreased significantly, whereas that of Streptococcus increased significantly at the E4 time point. CONCLUSIONS: Our results suggest that the pathological changes of intestinal necrosis in the small intestine of infants with NEC are not directly caused by excessive proliferation of pathogenic bacteria in the small intestine. The sources of microbiota in the small intestine of neonates, especially in premature infants, may be affected by multiple factors.


Asunto(s)
Enterocolitis Necrotizante , Enfermedades Fetales , Enfermedades del Recién Nacido , Lactante , Femenino , Recién Nacido , Humanos , ARN Ribosómico 16S/genética , Recien Nacido Prematuro , Intestinos/microbiología , Intestino Delgado
13.
Biotechnol Appl Biochem ; 71(1): 193-201, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37904286

RESUMEN

In this study, an electrochemical biosensor was constructed for the detection of fibrin, specifically by a simple two-step approach, with a novel artificial enzyme (Tetrazyme) based on the DNA tetrahedral framework as signal probe. The multichannel screen-printed electrode with the activated surface cannot only remove some biological impurities, but also serve as a carrier to immobilize a large number of antigen proteins. The DNA tetrahedral nanostructure was employed to ensure the high sensitivity of the probe for biological analysis. The hemin was chimeric into the G-quadruplex to constitute the complex with peroxidase catalytic activity (hemin/G4-DNAzyme), subsequently, Tetrazyme was formed through combining of this complex and DNA tetrahedral nucleic acid framework. The artificial enzyme signal probe formed by the covalent combination of the homing peptide (Cys-Arg-Glu-Lys-Ala, CREKA), which is the aptamer of fibrin and the new artificial enzyme is fixed on the surface of the multichannel carbon electrode by CREKA-specific recognition, so as to realize the sensitive detection of fibrin. The feasibility of sensing platform was validated by cyclic voltammetry (CV) and amperometric i-t curve (IT) methods. Effects of Tetrazyme concentration, CREKA concentrations and hybridization time on the sensor were explored. Under the best optimal conditions of 0.6 µmol/L Tetrazyme, 80 µmol/L CREKA, and 2.5 h reaction time, the immunosensor had two linear detection ranges, 10-40 nmol/L, with linear regression equation Y = 0.01487X - 0.011 (R2 = 0.992), and 50-100 nmol/L, with linear regression equation Y = 0.00137X + 0.6405 (R2 = 0.998), the detection limit was 9.4 nmol/L, S/N ≥ 3. The biosensor could provide a new method with great potential for the detection of fibrin with good selectivity, stability, and reproducibility.


Asunto(s)
Técnicas Biosensibles , Técnicas Biosensibles/métodos , Hemina/química , Fibrina , Reproducibilidad de los Resultados , Límite de Detección , Inmunoensayo , ADN/química , Técnicas Electroquímicas/métodos
14.
Gene ; 894: 148025, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38007163

RESUMEN

Rapeseed (Brassica napus L.) is susceptible to nutrient stresses during growth and development; however, the CPA (cation proton antiporter) family genes have not been identified in B. napus and their biological functions remain unclear. This study was aimed to identify the molecular characteristics of rapeseed CPAs and their transcriptional responses to multiple nutrient stresses. Through bioinformatics analysis, 117 BnaCPAs, consisting of three subfamilies: Na+/H+ antiporter (NHX), K+ efflux antiporter (KEA), and cation/H+ antiporter (CHX), were identified in the rapeseed genome. Transcriptomic profiling showed that BnaCPAs, particularly BnaNHXs, were transcriptionally responsive to diverse nutrient stresses, including Cd toxicity, K starvation, salt stress, NH4+ toxicity, and low Pi. We found that the salt tolerance of the transgenic rapeseed lines overexpressing BnaA05.NHX2 was significantly higher than that of wild type. Subcellular localization showed that BnaA05.NHX2 was localized on the tonoplast, and TEM combined with X-ray energy spectrum analysis revealed that the vacuolar Na+ concentrations of the BnaA05.NHX2-overexpressing rapeseed plants were significantly higher than those of wild type. The findings of this study will provide insights into the complexity of the BnaCPA family and a valuable resource to explore the in-depth functions of CPAs in B. napus.


Asunto(s)
Brassica napus , Brassica rapa , Brassica napus/genética , Antiportadores/genética , Protones , Brassica rapa/genética , Vacuolas , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico
15.
Bioelectrochemistry ; 156: 108627, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38142545

RESUMEN

The level of folate receptor (FR) has become one of the independent factors for measuring human tumor diseases. The precise quantification of FR is helpful for the early diagnosis and subsequent treatment of tumors. The modification of electrodes is a key issue in ensuring and enhancing the electrochemical biosensing ability. In this study, we in-situ synthesized a nanocomposite material with excellent conductivity and stability by grafting first-generation poly(amidoamine) dendrimers onto the MXene (Ti3C2TX) as the immobilized matrix (PAMAM@MXene). An electrochemical sensor was developed for FR monitor by loading the PAMAM@MXene on screen-printed carbon electrodes (SPCEs). Scanning electron microscopy (SEM) supported the effective synthesis of PAMAM@MXene. Under optimal conditions, the prepared sensor achieved the quantification of FR with a wide range of concentrations from 10 ng/mL to 1000 ng/mL with a detection limit (LOD) of 5.6 ng/mL. It also exhibited satisfactory selectivity, reproducibility, and stability, which provided the possibility for expanding new pathways in the detection of clinical FR.


Asunto(s)
Técnicas Biosensibles , Neoplasias , Nitritos , Elementos de Transición , Humanos , Reproducibilidad de los Resultados , Técnicas Electroquímicas , Electrodos , Ácido Fólico
16.
Biology (Basel) ; 12(10)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37887035

RESUMEN

Aging can induce changes in social behaviors among humans and nonhuman primates (NHPs). Therefore, investigating the aging process in primate species can provide valuable evidence regarding age-related concerns in humans. However, the link between aging and behavioral patterns in nonhuman primates remains poorly comprehended. To address this gap, the present research examined aging-related behaviors exhibited by Tibetan macaques (Macaca thibetana) in their natural habitat in Huangshan, China, during the period from October 2020 to June 2021. We collected behavioral data from 25 adult macaques using different data collection methods, including focal animal sampling and ad libitum sampling methods. We found that among adult female macaques, the frequency of being attacked decreased with their age, and that the frequency of approaching other monkeys also decreased as age increased. In males, however, this was not the case. Our findings demonstrate that older female macaques exhibit active conflict avoidance, potentially attributed to a reduction in the frequency of approaching conspecifics and a decreased likelihood of engaging in conflict behaviors. This study provides some important data for investigating aging in NHPs and confirms that Macaca can exhibit a preference for social partners under aging-related contexts similar to humans.

17.
World J Surg Oncol ; 21(1): 339, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37880729

RESUMEN

BACKGROUND: To determine the efficacy of adjuvant radiotherapy for stage II-III biliary tract carcinoma. METHODS: We retrospectively analyzed the data of 37 patients who underwent radical resection of biliary tract carcinomas at the Affiliated Hospital of Inner Mongolia Medical University between 2016 and 2020. We analyzed survival differences between patients who did (n = 17) and did not (n = 20) receive postoperative adjuvant radiotherapy by using Kaplan-Meier analysis. The log-rank test and Cox univariate analysis were used. The Cox proportional risk regression model was used for the multifactorial analysis of factors influencing prognosis. RESULTS: The median survival time (28.9 vs. 14.5 months) and the 1-year (82.40% vs. 55.0%) and 2-year survival rates (58.8% vs. 25.0%) were significantly higher among patients who received adjuvant radiotherapy than among those who did not (χ2 = 6.381, p = 0.012). Multifactorial analysis showed that pathological tumor type (p = 0.004), disease stage (p = 0.021), and adjuvant radiotherapy (p = 0.001) were independent prognostic factors in biliary tract carcinoma. Subgroup analyses showed that compared to no radiotherapy, adjuvant radiotherapy significantly improved median survival time in patients with stage III disease (21.6 vs. 12.7 months; p = 0.017), positive margins (28.9 vs. 10.5 months; p = 0.012), and T3 or T4 tumors (26.8 vs. 16.8 months; p = 0.037). CONCLUSION: Adjuvant radiotherapy significantly improved the survival of patients with biliary tract carcinoma, and is recommended especially for patients with stage III disease, positive surgical margins, or ≥ T3.


Asunto(s)
Sistema Biliar , Carcinoma , Neoplasias Gastrointestinales , Humanos , Radioterapia Adyuvante/efectos adversos , Estudios Retrospectivos , Pronóstico , Estadificación de Neoplasias
18.
EClinicalMedicine ; 63: 102189, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37692076

RESUMEN

Background: This study aimed to evaluate the efficacy and safety of RAY1216, a novel inhibitor of 3-chymotrypsin-like cysteine protease (3CLpro), in adults with coronavirus disease 2019 (COVID-19). Methods: This phase 2, single centre, randomised, double-blind, placebo-controlled trial included hospitalised patients between August 14, 2022, and September 26, 2022, in Sanya Central Hospital (The Third People's Hospital of Hainan Province) in China with no severe symptoms if they had laboratory-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection for not more than 120 h (5 days) and a real-time quantitative polymerase chain reaction (qPCR) cycle threshold (Ct) value of ≤30 for both the open reading frames 1 ab (ORF1ab) and nucleocapsid (N) genes within 72 h before randomisation. Half of the participants (n = 30) were randomly assigned (2:1) to receive either RAY1216 or a matched placebo three times a day (TID) for 5 days (15 doses in total), while the other half received RAY1216 plus ritonavir (RAY1216 plus RTV) or a matched placebo every 12 h for 5 days (10 doses in total). The primary endpoint was the time of viral clearance. Secondary outcomes included the changes of the SARS-CoV-2 RNA viral load, the positivity rate of the nucleic acid test, and the recovery time of clinical symptoms. A safety evaluation was performed to record and analyse all adverse events that occurred during and after drug administration as well as any cases in which dosing was halted because of these events. Clinicaltrials.gov identifier: ChiCTR2200062889. Findings: The viral shedding times in the RAY1216 and RAY1216 plus RTV groups were 166 h (95% confidence interval (CI): 140-252) and 155 h (95%CI: 131-203), respectively, which were 100 h (4.2 days) and 112 h (4.6 days) shorter than that of the placebo group, respectively (RAY1216 group vs. Placebo p = 0.0060, RAY1216 plus RTV group vs. Placebo p = 0.0001). At 24 h, 72 h, and 120 h after administration, the viral RNA loads in the RAY1216 and RAY1216 plus RTV groups were significantly less than those of the placebo groups. At 280 h (11.5 days) after administration, the nucleic acid test results in the RAY1216 and RAY1216 plus RTV groups were both negative. The common adverse events related to the investigational drugs were mild and self-limiting laboratory examination abnormalities. Interpretation: Our findings suggest that RAY1216 monotherapy and RAY1216 plus ritonavir both demonstrated significant antiviral activity and reduced the duration of COVID-19 while maintaining a satisfactory safety profile. Considering the limited clinical application of RTV, it is recommended to use RAY1216 alone to further verify its efficacy and safety. Funding: This study was sponsored by the Key Research and Development Program of China (2022YFC0868700).

19.
Heliyon ; 9(7): e17746, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37456022

RESUMEN

Air quality prediction is a typical Spatiotemporal modeling problem, which always uses different components to handle spatial and temporal dependencies in complex systems separately. Previous models based on time series analysis and recurrent neural network (RNN) methods have only modeled time series while ignoring spatial information. Previous graph convolution neural networks (GCNs) based methods usually require providing spatial correlation graph structure of observation sites in advance. The correlations among these sites and their strengths are usually calculated using prior information. However, due to the limitations of human cognition, limited prior information cannot reflect the real station-related structure or bring more effective information for accurate prediction. To this end, we propose a novel Dynamic Graph Neural Network with Adaptive Edge Attributes (DGN-AEA) on the message passing network, which generates the adaptive bidirected dynamic graph by learning the edge attributes as model parameters. Unlike prior information to establish edges, our method can obtain adaptive edge information through end-to-end training without any prior information. Thus reducing the complexity of the problem. Besides, the hidden structural information between the stations can be obtained as model by-products, which can help make some subsequent decision-making analyses. Experimental results show that our model received state-of-the-art performance than other baselines.

20.
Colloids Surf B Biointerfaces ; 228: 113419, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37393700

RESUMEN

Paclitaxel is one of the most effective chemotherapeutic drugs which processes the obvious curative effect for a broad range of cancers including breast, ovarian, lung, and head & neck cancers. Though some novel paclitaxel-loaded formulations have been developed, the clinical application of the paclitaxel is still limited due to its toxicity and solubility issues. Over the past decades, we have seen rapid advances in applying nanocarriers in paclitaxel delivery systems. The nano-drug delivery systems offer unique advantages in enhancing the aqueous solubility, reducing side effects, increasing permeability, prolonging circulation half-life of paclitaxel. In this review, we summarize recent advances in developing novel paclitaxel-loaded nano delivery systems based on nanocarriers. These nanocarriers show great potentials in overcoming the disadvantages of pure paclitaxel and as a result improving the efficacy.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Sistema de Administración de Fármacos con Nanopartículas , Medicina de Precisión , Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...