Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Intervalo de año de publicación
1.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-901446

RESUMEN

Background@#Pseudorabies virus (PRV) infection leads to high mortality in swine. Despite extensive efforts, effective treatments against PRV infection are limited. Furthermore, the inflammatory response induced by PRV strain GXLB-2013 is unclear. @*Objectives@#Our study aimed to investigate the inflammatory response induced by PRV strain GXLB-2013, establish an inflammation model to elucidate the pathogenesis of PRV infection further, and develop effective drugs against PRV infection. @*Methods@#Kunming mice were infected intramuscularly with medium, LPS, and different doses of PRV-GXLB-2013. Viral spread and histopathological damage to brain, spleen, and lung were determined at 7 days post-infection (dpi). Immune organ indices, levels of reactive oxygen species (ROS), nitric oxide (NO), and inflammatory cytokines, as well as levels of activity of COX-2 and iNOS were determined at 4, 7, and 14 dpi. @*Results@#At 105 –106 TCID50 PRV produced obviously neurological symptoms and 100% mortality in mice. Viral antigens were detectable in kidney, heart, lung, liver, spleen, and brain. In addition, inflammatory injuries were apparent in brain, spleen, and lung of PRVinfected mice. Moreover, PRV induced increases in immune organ indices, ROS and NO levels, activity of COX-2 and iNOS, and the content of key pro-inflammatory cytokines, including interleukin (IL)-1β, IL-6, tumor necrosis factor-α, interferon-γ and MCP-1. Among the tested doses, 10 2 TCID 50 of PRV produced a significant inflammatory mediator increase. @*Conclusions@#An inflammatory model induced by PRV infection was established in mice, and 102 TCID50 PRV was considered as the best concentration for the establishment of the model.

2.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-893742

RESUMEN

Background@#Pseudorabies virus (PRV) infection leads to high mortality in swine. Despite extensive efforts, effective treatments against PRV infection are limited. Furthermore, the inflammatory response induced by PRV strain GXLB-2013 is unclear. @*Objectives@#Our study aimed to investigate the inflammatory response induced by PRV strain GXLB-2013, establish an inflammation model to elucidate the pathogenesis of PRV infection further, and develop effective drugs against PRV infection. @*Methods@#Kunming mice were infected intramuscularly with medium, LPS, and different doses of PRV-GXLB-2013. Viral spread and histopathological damage to brain, spleen, and lung were determined at 7 days post-infection (dpi). Immune organ indices, levels of reactive oxygen species (ROS), nitric oxide (NO), and inflammatory cytokines, as well as levels of activity of COX-2 and iNOS were determined at 4, 7, and 14 dpi. @*Results@#At 105 –106 TCID50 PRV produced obviously neurological symptoms and 100% mortality in mice. Viral antigens were detectable in kidney, heart, lung, liver, spleen, and brain. In addition, inflammatory injuries were apparent in brain, spleen, and lung of PRVinfected mice. Moreover, PRV induced increases in immune organ indices, ROS and NO levels, activity of COX-2 and iNOS, and the content of key pro-inflammatory cytokines, including interleukin (IL)-1β, IL-6, tumor necrosis factor-α, interferon-γ and MCP-1. Among the tested doses, 10 2 TCID 50 of PRV produced a significant inflammatory mediator increase. @*Conclusions@#An inflammatory model induced by PRV infection was established in mice, and 102 TCID50 PRV was considered as the best concentration for the establishment of the model.

3.
Artículo | WPRIM (Pacífico Occidental) | ID: wpr-833693

RESUMEN

Background@#Panax notoginseng saponins (PNS) are bioactive substances extracted from P. notoginseng that are widely used to treat cardiovascular and cerebrovascular diseases and interstitial diseases. PNS have the functions of scavenging free radicals, anti-inflammation, improving blood supply for tissue and so on. @*Objectives@#The aim of this study was to investigate the effects of PNS on the oxidative stress of immune cells induced by porcine circovirus 2 (PCV2) infection in vitro and in vivo. @*Methods@#Using an oxidative stress model of PCV2 infection in a porcine lung cell line (3D4/2 cells) and mice, the levels of nitric oxide (NO), reactive oxygen species (ROS), total glutathione (T-GSH), reduced glutathione (GSH), and oxidized glutathione (GSSG) and the activities of xanthine oxidase (XOD), myeloperoxidase (MPO) and inducible nitric oxide synthetase (iNOS) were determined to evaluate the regulatory effects of PNS on oxidative stress. @*Results@#PNS treatment significantly reduced the levels of NO and ROS, the content of GSSG and the activities of XOD, MPO, and iNOS (p < 0.05), while significantly increasing GSH and the ratio of GSH/GSSG in infected 3D4/2 cells (p < 0.05).Similarly, in the in vivo study, PNS treatment significantly decreased the level of ROS in spleen lymphocytes of infected mice (p < 0.05), increased the levels of GSH and T-GSH (p < 0.05), significantly decreased the GSSG level (p < 0.05), and decreased the activities of XOD, MPO, and iNOS. @*Conclusions@#PNS could regulate the oxidative stress of immune cells induced by PCV2 infection in vitro and in vivo.

4.
Biomed Pharmacother ; 112: 108741, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30970528

RESUMEN

Seaweeds are excellent source of bioactive compounds and seaweed-derived polysaccharides have demonstrated an array of biological effects. Here, we investigated the effect of polysaccharide of Sargassum weizhouense (PSW) on the inflammatory response in porcine circovirus type 2 (PCV2) infected mice and the underlying mechanism was studied according to the histone acetylation. After PCV2 infection, the levels of TNF-α, IL-1ß, IL-6, IL-8, IL-10, MCP-1, COX-1, COX-2 and HAT in both serum and spleen were significantly increased (P <0.05). The mRNA expression of TNF-α, IL-6, IL-10 and NF-κB p65 were elevated in PCV2 infected mice (P <0.05). The HDAC content in both serum and spleen as well the mRNA expression of HDAC1 were greatly decreased (P <0.05). PSW treatment dramatically inhibited the secretions of inflammatory cytokines and HATs, reduced mRNA expression of TNF-α, IL-6, IL-10 and NF-κB p65, but promoted HDAC secretion and mRNA expression of HDAC1 in PCV2-infected mice. The acetylation of both H3 and H4 was significantly up-regulated in PCV2-infected mice, and strongly inhibited by PSW treatment (P <0.01). These results suggested that PCV2 mediate the equilibrium between HATs and HDACs, alternate the histone acetylation and thus DNA packaging, and then activate the transcription of inflammatory cytokines. PSW could inhibit the histone acetylation and the production of inflammatory cytokines, showing excellent potentials in improving the resistance of host against PCV2 infection.


Asunto(s)
Antivirales/uso terapéutico , Infecciones por Circoviridae/tratamiento farmacológico , Histonas/metabolismo , Polisacáridos/uso terapéutico , Sargassum/química , Acetilación , Animales , Antivirales/aislamiento & purificación , Infecciones por Circoviridae/inmunología , Citocinas/sangre , Femenino , Histona Acetiltransferasas/metabolismo , Histona Desacetilasas/metabolismo , Inflamación , Masculino , Ratones Endogámicos , Polisacáridos/aislamiento & purificación , Bazo/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...