Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gels ; 9(5)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37232958

RESUMEN

Recent advances in the understanding of formulations and processing techniques have allowed for greater freedom in plant-based emulsion gel design to better recreate conventional animal-based foods. The roles of plant-based proteins, polysaccharides, and lipids in the formulation of emulsion gels and relevant processing techniques such as high-pressure homogenization (HPH), ultrasound (UH), and microfluidization (MF), were discussed in correlation with the effects of varying HPH, UH, and MF processing parameters on emulsion gel properties. The characterization methods for plant-based emulsion gels to quantify their rheological, thermal, and textural properties, as well as gel microstructure, were presented with a focus on how they can be applied for food purposes. Finally, the potential applications of plant-based emulsion gels, such as dairy and meat alternatives, condiments, baked goods, and functional foods, were discussed with a focus on sensory properties and consumer acceptance. This study found that the implementation of plant-based emulsion gel in food is promising to date despite persisting challenges. This review will provide valuable insights for researchers and industry professionals looking to understand and utilize plant-based food emulsion gels.

2.
J Biophotonics ; 14(3): e202000392, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33205905

RESUMEN

Label-free chemical bond imaging is of great importance in biology and medicine. Photoacoustic imaging at the third near-infrared windows (1600-1870 nm, near-infrared-III) provides a stable molecular vibrational imaging tool for lipid-rich tissue owing to the first overtone transition of the CH bond at 1.7 µm. However, lacking high-energy pulsed laser sources at 1.7 µm and the strong water absorption significantly limit the signal-to-noise ratio of the lipid imaging, especially for thin lipid tissues. To circumvent this barrier, we develop near-infrared-III double-illumination optical-resolution photoacoustic microscopy (DIOR-PAM) for improving the sensitivity of label-free lipid imaging. Using the same laser, DIOR-PAM can enhance the sensitivity by nearly 100%, which we prove in the Monte Carlo simulation. We experimentally demonstrated 50% ~ 100% sensitivity enhancements on nonbiological and biological lipid-rich samples.


Asunto(s)
Microscopía , Técnicas Fotoacústicas , Rayos Infrarrojos , Iluminación , Relación Señal-Ruido , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...