Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Arch Endocrinol Metab ; 68: e230292, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38652701

RESUMEN

Diabetic retinopathy (DR) is a complication of diabetes with a complex pathophysiology and multiple factors involved. Recently, it has been found that the upregulation of the renin-angiotensin-aldosterone system (RAAS) leads to overexpression of angiotensin II (Ang II), which induces oxidative stress, inflammation, and angiogenesis in the retina. Therefore, RAAS may be a promising therapeutic target in DR. Notably, RAAS inhibitors are often used in the treatment of hypertension. Still, the potential role and mechanism of DR must be further studied. In this review, we discuss and summarize the pathology and potential therapeutic goals of RAAS in DR.


Asunto(s)
Retinopatía Diabética , Sistema Renina-Angiotensina , Humanos , Retinopatía Diabética/tratamiento farmacológico , Retinopatía Diabética/fisiopatología , Sistema Renina-Angiotensina/fisiología , Sistema Renina-Angiotensina/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Angiotensina II/fisiología , Animales
2.
Arch. endocrinol. metab. (Online) ; 68: e230292, 2024. graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1556932

RESUMEN

ABSTRACT Diabetic retinopathy (DR) is a complication of diabetes with a complex pathophysiology and multiple factors involved. Recently, it has been found that the upregulation of the renin-angiotensin-aldosterone system (RAAS) leads to overexpression of angiotensin II (Ang II), which induces oxidative stress, inflammation, and angiogenesis in the retina. Therefore, RAAS may be a promising therapeutic target in DR. Notably, RAAS inhibitors are often used in the treatment of hypertension. Still, the potential role and mechanism of DR must be further studied. In this review, we discuss and summarize the pathology and potential therapeutic goals of RAAS in DR.

3.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;44(6): 524-530, June 2011. tab
Artículo en Inglés | LILACS | ID: lil-589979

RESUMEN

Both genetic background and diet have profound effects on plasma lipid profiles. We hypothesized that a high-carbohydrate (high-CHO) diet may affect the ratios of serum lipids and apolipoproteins (apo) differently in subjects with different genotypes of the SstI polymorphism in the apoCIII gene (APOC3). Fifty-six healthy university students (27 males and 29 females, 22.89 ± 1.80 years) were given a washout diet of 54 percent carbohydrate for 7 days, followed by a high-CHO diet of 70 percent carbohydrate for 6 days without total energy restriction. Serum triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), apoB100, apoAI, and the APOC3 SstI polymorphism were analyzed. The ratios of serum lipids and apoB100/apoAI were calculated. At baseline, the TG/HDL-C ratio was significantly higher in females, but not in males, with the S2 allele. The differences in the TG/HDL-C ratio between genotypes remained the same after the washout and the high-CHO diet in females. When compared with those before the high-CHO diet, the TC/HDL-C (male S2 carriers: 3.13 ± 1.00 vs 2.36 ± 0.65, P = 0.000; male subjects with the S1S1 genotype: 2.97 ± 0.74 vs 2.09 ± 0.55, P = 0.000; female S2 carriers: 2.68 ± 0.36 vs 2.24 ± 0.37, P = 0.004; female subjects with the S1S1 genotype: 2.69 ± 0.41 vs 2.09 ± 0.31, P = 0.000) and LDL-C/HDL-C (male S2 carriers: 1.44 ± 0.71 vs 1.06 ± 0.26, P = 0.012; male subjects with the S1S1 genotype: 1.35 ± 0.61 vs 1.01 ± 0.29, P = 0.005; female S2 carriers: 1.18 ± 0.33 vs 1.00 ± 0.18, P = 0.049; female subjects with the S1S1 genotype: 1.18 ± 0.35 vs 1.04 ± 0.19, P = 0.026) ratios were significantly decreased after the high-CHO diet regardless of gender and of genotype of the APOC3 SstI polymorphism. However, in female S2 carriers, the TG/HDL-C (1.38 ± 0.46 vs 1.63 ± 0.70, P = 0.039) ratio was significantly increased after the high-CHO diet. In conclusion, the high-CHO diet has favorable effects on the TC/HDL-C and LDL-C/HDL-C ratios regardless of gender and of genotype of the APOC3 SstI polymorphism. Somehow, it enhanced the adverse effect of the S2 allele on the TG/HDL-C ratio only in females.


Asunto(s)
Femenino , Humanos , Masculino , Adulto Joven , Apolipoproteína C-III/genética , HDL-Colesterol/sangre , Carbohidratos de la Dieta/efectos adversos , Polimorfismo Genético , Triglicéridos/sangre , Alelos , Pueblo Asiatico , Apolipoproteína A-I/sangre , Apolipoproteína A-I/genética , /sangre , /genética , Apolipoproteína C-III/sangre , HDL-Colesterol/genética , LDL-Colesterol/sangre , LDL-Colesterol/genética , Colesterol/sangre , Colesterol/genética , Carbohidratos de la Dieta/administración & dosificación , Genotipo , Técnicas de Genotipaje , Heterocigoto , Factores Sexuales
4.
Braz J Med Biol Res ; 44(6): 524-30, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21603779

RESUMEN

Both genetic background and diet have profound effects on plasma lipid profiles. We hypothesized that a high-carbohydrate (high-CHO) diet may affect the ratios of serum lipids and apolipoproteins (apo) differently in subjects with different genotypes of the SstI polymorphism in the apoCIII gene (APOC3). Fifty-six healthy university students (27 males and 29 females, 22.89 ± 1.80 years) were given a washout diet of 54% carbohydrate for 7 days, followed by a high-CHO diet of 70% carbohydrate for 6 days without total energy restriction. Serum triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), apoB100, apoAI, and the APOC3 SstI polymorphism were analyzed. The ratios of serum lipids and apoB100/apoAI were calculated. At baseline, the TG/HDL-C ratio was significantly higher in females, but not in males, with the S2 allele. The differences in the TG/HDL-C ratio between genotypes remained the same after the washout and the high-CHO diet in females. When compared with those before the high-CHO diet, the TC/HDL-C (male S2 carriers: 3.13 ± 1.00 vs 2.36 ± 0.65, P = 0.000; male subjects with the S1S1 genotype: 2.97 ± 0.74 vs 2.09 ± 0.55, P = 0.000; female S2 carriers: 2.68 ± 0.36 vs 2.24 ± 0.37, P = 0.004; female subjects with the S1S1 genotype: 2.69 ± 0.41 vs 2.09 ± 0.31, P = 0.000) and LDL-C/HDL-C (male S2 carriers: 1.44 ± 0.71 vs 1.06 ± 0.26, P = 0.012; male subjects with the S1S1 genotype: 1.35 ± 0.61 vs 1.01 ± 0.29, P = 0.005; female S2 carriers: 1.18 ± 0.33 vs 1.00 ± 0.18, P = 0.049; female subjects with the S1S1 genotype: 1.18 ± 0.35 vs 1.04 ± 0.19, P = 0.026) ratios were significantly decreased after the high-CHO diet regardless of gender and of genotype of the APOC3 SstI polymorphism. However, in female S2 carriers, the TG/HDL-C (1.38 ± 0.46 vs 1.63 ± 0.70, P = 0.039) ratio was significantly increased after the high-CHO diet. In conclusion, the high-CHO diet has favorable effects on the TC/HDL-C and LDL-C/HDL-C ratios regardless of gender and of genotype of the APOC3 SstI polymorphism. Somehow, it enhanced the adverse effect of the S2 allele on the TG/HDL-C ratio only in females.


Asunto(s)
Apolipoproteína C-III/genética , HDL-Colesterol/sangre , Carbohidratos de la Dieta/efectos adversos , Polimorfismo Genético , Triglicéridos/sangre , Alelos , Apolipoproteína A-I/sangre , Apolipoproteína A-I/genética , Apolipoproteína B-100/sangre , Apolipoproteína B-100/genética , Apolipoproteína C-III/sangre , Pueblo Asiatico , Colesterol/sangre , Colesterol/genética , HDL-Colesterol/genética , LDL-Colesterol/sangre , LDL-Colesterol/genética , Carbohidratos de la Dieta/administración & dosificación , Femenino , Genotipo , Técnicas de Genotipaje , Heterocigoto , Humanos , Masculino , Factores Sexuales , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA