Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Dent ; 147: 105134, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38885733

RESUMEN

OBJECTIVE: To evaluate the mechanical and biological properties of three-dimensionally (3D) printable resins filled with 2-methacryloyloxyethyl phosphorylcholine (MPC) and silicate-based composites and compare with those of a commercially available 3D-printable resin for definitive restorations. METHODS: A group of 3D-printable hybrid resins (HRs) filled with 6 wt% MPC and three different compositions of silicate-based composites (barium silicate to zirconium silicate ratios: 1.50:1 for HR1, 0.67:1 for HR2, and 0.25:1 for HR3) were prepared. The HR groups were compared with the commercially available unfilled 3D-printable resin (CR) marketed for definitive restorations in terms of flexural strength and modulus, fracture toughness, surface roughness, Vickers hardness, light transmittance (all, n = 15), cytotoxicity, and protein adsorption (both, n = 3). All data were analyzed by using non-parametric Kruskal-Wallis and Dunn's tests (α=0.05). RESULTS: The HR groups had significantly higher flexural strength, modulus, fracture toughness, and hardness values than the CR (P < 0.001). HR3 had the highest surface roughness and light transmittance among the groups (P ≤ 0.006). None of tested resins showed cytotoxicity. Both HR2 and HR3 showed significantly lower protein adsorption than the CR, with a difference of approximately 60% (P ≤ 0.026). CONCLUSION: Both HR2 and HR3 exhibited superior mechanical properties (flexural strength, flexural modulus, fracture toughness, and Vickers hardness), light transmittance, and protein-repellent activity than the CR, with no impact on cytotoxicity. CLINICAL SIGNIFICANCE: The MPC/silicate-based composite-filled resins may be a suitable alternative for definitive restorations, given their higher mechanical properties and promising biological properties to prevent microbial adhesion and subsequent biofilm formation, as well as their non-cytotoxic properties.


Asunto(s)
Resinas Compuestas , Dureza , Ensayo de Materiales , Metacrilatos , Silicatos , Propiedades de Superficie , Silicatos/química , Resinas Compuestas/química , Adsorción , Metacrilatos/química , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Materiales Dentales/química , Restauración Dental Permanente/métodos , Resistencia Flexional , Módulo de Elasticidad , Animales , Polímeros/química , Humanos , Circonio/química
2.
J Dent ; 147: 105142, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38906454

RESUMEN

OBJECTIVES: To compare implant supported crowns (ISCs) designed using deep learning (DL) software with those designed by a technician using conventional computer-aided design software. METHODS: Twenty resin-based partially edentulous casts (maxillary and mandibular) used for fabricating ISCs were evaluated retrospectively. ISCs were designed using a DL-based method with no modification of the as-generated outcome (DB), a DL-based method with further optimization by a dental technician (DM), and a conventional computer-aided design method by a technician (NC). Time efficiency, crown contour, occlusal table area, cusp angle, cusp height, emergence profile angle, occlusal contacts, and proximal contacts were compared among groups. Depending on the distribution of measured data, various statistical methods were used for comparative analyses with a significance level of 0.05. RESULTS: ISCs in the DB group showed a significantly higher efficiency than those in the DM and NC groups (P ≤ 0.001). ISCs in the DM group exhibited significantly smaller volume deviations than those in the DB group when superimposed on ISCs in the NC group (DB-NC vs. DM-NC pairs, P ≤ 0.008). Except for the number and intensity of occlusal contacts (P ≤ 0.004), ISCs in the DB and DM groups had occlusal table areas, cusp angles, cusp heights, proximal contact intensities, and emergence profile angles similar to those in the NC group (P ≥ 0.157). CONCLUSIONS: A DL-based method can be beneficial for designing posterior ISCs in terms of time efficiency, occlusal table area, cusp angle, cusp height, proximal contact, and emergence profile, similar to the conventional human-based method. CLINICAL SIGNIFICANCE: A deep learning-based design method can achieve clinically acceptable functional properties of posterior ISCs. However, further optimization by a technician could improve specific outcomes, such as the crown contour or emergence profile angle.


Asunto(s)
Diseño Asistido por Computadora , Coronas , Aprendizaje Profundo , Oclusión Dental , Diseño de Prótesis Dental , Prótesis Dental de Soporte Implantado , Humanos , Estudios Retrospectivos , Diseño de Prótesis Dental/métodos , Programas Informáticos , Arcada Parcialmente Edéntula/rehabilitación , Implantes Dentales
3.
J Dent ; 147: 105143, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38906456

RESUMEN

OBJECTIVES: To investigate how postpolymerization time (PPT) and atmosphere (PPA) influence the surface properties, protein adsorption, and microbial adhesion of two types of additively manufactured (AM) resins used for definitive restorations. METHODS: Two different types of commercially available AM resins for definitive restorations (UR and CR) were used to create disk-shaped specimens. These specimens were divided into eight groups based on resin type (UR and CR), PPT (standard or extended), and PPA (air or nitrogen). After postpolymerization, the surface roughness (Ra and Sa) and surface free energy (SFE) of all specimens were measured. The study also evaluated protein adsorption, microbial attachment, and cytotoxicity. A non-parametric factorial analysis of variance with post-hoc analyses was conducted, using a significance level (α) of 0.05. RESULTS: The Ra and Sa values for CR were higher than those for UR, regardless of PPT or PPA (P < 0.05). For UR, SFE was higher with extended PPT compared to standard PPT. CR had higher SFE than UR under standard PPT. The interaction between PPT and PPA had a significant effect on protein adsorption (P < 0.05). When PPT was standard, nitrogen significantly increased protein adsorption compared to air. The interaction between resin type and PPA, and between resin type and PPT, significantly affected microbial adhesion (P < 0.05). The changes in PPT or PPA did not affect the cytotoxicity of either AM resin. CONCLUSION: Surface properties, protein adsorption, and microbial attachment were influenced by the interactions among PPT, PPA, and resin type. These factors can have implications for resin-based definitive restorations. CLINICAL SIGNIFICANCES: Clinicians should understand the impact of PPT and PPA on the surface properties of AM resins for definitive restorations, particularly regarding protein adsorption and microbial adhesion. Additionally, the type of AM resin (based on chemical composition) could affect its biological properties.


Asunto(s)
Adhesión Bacteriana , Biopelículas , Resinas Compuestas , Ensayo de Materiales , Polimerizacion , Propiedades de Superficie , Biopelículas/efectos de los fármacos , Adhesión Bacteriana/efectos de los fármacos , Factores de Tiempo , Resinas Compuestas/química , Materiales Dentales/química , Adsorción , Restauración Dental Permanente , Humanos , Metacrilatos/química , Atmósfera , Nitrógeno/química , Streptococcus mutans/efectos de los fármacos , Poliuretanos/química
4.
J Prosthet Dent ; 132(2): 465.e1-465.e8, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38890060

RESUMEN

STATEMENT OF PROBLEM: Studies on the effect of barium silicate on the material properties of additively manufactured (AM) resins containing 2-methacryloyloxyethyl phosphorylcholine (MPC) for dental applications are lacking. PURPOSE: The purpose of this in vitro study was to evaluate the mechanical properties, transmittance, and protein adsorption of MPC-containing AM resin incorporated with different barium silicate contents and to compare these findings with those of a commercially available unfilled AM resin marketed for definitive restorations. MATERIAL AND METHODS: Resins incorporating 6 wt% MPC and 4 different concentrations of barium silicate (10 wt%, MB10; 20 wt%, MB20; 30 wt%, MB30; and 40 wt%, MB40) were prepared. An MPC-containing resin with no filler was also prepared (0 wt%, MBN). Surface roughness (n=15), Vickers hardness (n=15), flexural strength and modulus (n=15), fracture toughness (n=15), transmittance (n=15), and protein adsorption (n=3) of the filled resin specimens were measured and compared with those of commercially available unfilled resin specimens. All data were analyzed using the Kruskal-Wallis and Dunn tests (α=.05). RESULTS: All experimental resins had higher surface roughness than the unfilled resin (P≤.048). MB40 had higher hardness, flexural strength, flexural modulus, and fracture toughness than most other groups (P≤.047). MB10 had higher transmittance than most other groups (P≤.012). All experimental resins had lower protein adsorption than the unfilled resin, regardless of the barium silicate content (P≤.023). CONCLUSIONS: The experimental resin containing 6 wt% MPC and 40 wt% barium silicate showed better mechanical properties and lower protein adsorption than the resin with no MPC or ceramic fillers. Transmittance decreased with the increase of barium silicate in the resins.


Asunto(s)
Ensayo de Materiales , Silicatos , Propiedades de Superficie , Silicatos/química , Adsorción , Polímeros/química , Compuestos de Bario/química , Metacrilatos/química , Fosforilcolina/química , Fosforilcolina/análogos & derivados , Proteínas/química , Técnicas In Vitro , Resistencia Flexional , Dureza , Materiales Dentales/química
5.
Int J Prosthodont ; 37(7): 275-284, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38787592

RESUMEN

Artificial intelligence (AI) has been expanding into areas that were thought to be reserved for human experts and has a tremendous potential to improve patient care and revolutionize the healthcare field. Recently launched AI-powered dental design solutions enable automated occlusal device design. This article describes a dental method for the complete digital workflow for occlusal device fabrication using two different AIpowered design software programs (Medit Splints and 3Shape Automate) and additive manufacturing. Additionally, the benefits and drawbacks of this workflow were reviewed and compared to conventional workflows.


Asunto(s)
Inteligencia Artificial , Diseño Asistido por Computadora , Programas Informáticos , Flujo de Trabajo , Humanos , Diseño de Prótesis Dental , Ferulas Oclusales
6.
J Dent ; 144: 104941, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38490323

RESUMEN

OBJECTIVES: To evaluate how restoration thickness (0.5 mm and 0.7 mm) affects the fabrication trueness of additively manufactured definitive resin-based laminate veneers, and to analyze the effect of restoration thickness and margin location on margin quality. METHODS: Two maxillary central incisors were prepared either for a 0.5 mm- or 0.7 mm-thick laminate veneer. After acquiring the partial-arch scans of each preparation, laminate veneers were designed and stored as reference data. By using these reference data, a total of 30 resin-based laminate veneers were additively manufactured (n = 15 per thickness). All veneers were digitized and stored as test data. The reference and test data were superimposed to calculate the root mean square values at overall, external, intaglio, and marginal surfaces. The margin quality at labial, incisal, mesial, and distal surfaces was evaluated. Fabrication trueness at each surface was analyzed with independent t-tests, while 2-way analysis of variance was used to analyze the effect of thickness and margin location on margin quality (α = 0.05). RESULTS: Regardless of the evaluated surface, 0.7 mm-thick veneers had lower deviations (P < 0.001). Only the margin location (P < 0.001) affected the margin quality as labial margins had the lowest quality (P < 0.001). CONCLUSION: Restoration thickness affected the fabrication trueness of resin-based laminate veneers as 0.7 mm-thick veneers had significantly higher trueness. However, restoration thickness did not affect the margin quality and labial margins had the lowest quality. CLINICAL SIGNIFICANCE: Laminate veneers fabricated by using tested urethane-based acrylic resin may require less adjustment when fabricated in 0.7 mm thickness. However, marginal integrity issues may be encountered at the labial surface.


Asunto(s)
Resinas Compuestas , Adaptación Marginal Dental , Materiales Dentales , Coronas con Frente Estético , Incisivo , Propiedades de Superficie , Humanos , Materiales Dentales/química , Resinas Compuestas/química , Ensayo de Materiales , Diseño de Prótesis Dental , Porcelana Dental/química , Diseño Asistido por Computadora , Cerámica/química , Poliuretanos/química , Metacrilatos/química
7.
Int J Prosthodont ; 37(7): 151-158, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38498866

RESUMEN

PURPOSE: This study investigated the impact of reducing the oxygen concentration via nitrogen injection during the postcuring process of 3D-printed dental materials. MATERIALS AND METHODS: Resin specimens for dental crown and bridge (15-mm diameter, both 1-mm and 2-mm heights) were 3D-printed and rinsed. Subsequently, the postcuring process was conducted on nine groups categorized according to atmospheric conditions within the curing device (20% [control], 10%, and 5% oxygen) and curing times (10, 15, and 20 minutes). Surface roughness was measured using a gloss meter. Surface polymerization was confirmed through Fourier-transform infrared spectroscopy (FT-IR) analysis, and the flexural strength and elastic modulus of the specimens were measured using a universal testing machine. Water absorption and solubility were determined according to Inernational Organization for Standardization (ISO) standards. All evaluation criteria were statistically analyzed using one-way ANOVA and Tukey's post hoc test based on oxygen concentration. RESULTS: The elastic modulus did not show statistically significant differences in all groups. However, compared to the control group, the flexural strength, degree of conversion, and gloss significantly increased in the groups with decreased oxygen concentrations. Conversely, water solubility and water absorption significantly decreased in a few groups with reduced oxygen concentration. CONCLUSIONS: Reducing oxygen concentration through nitrogen injection during the postcuring process of 3D printing enhances the suitability of the dental prosthetic materials. The significant increase in flexural strength can particularly enhance the utility of these materials in dental prosthetics.


Asunto(s)
Impresión Tridimensional , Agua , Espectroscopía Infrarroja por Transformada de Fourier , Ensayo de Materiales , Docilidad , Agua/química , Nitrógeno , Resinas Sintéticas , Propiedades de Superficie
8.
Int J Prosthodont ; 37(7): 133-141, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38498865

RESUMEN

PURPOSE: To evaluate the flexural strength (FS) and microhardness of various CAD/CAM restorative materials intended for definitive use. The effect of hydrothermal aging on the mechanical properties of these materials was also investigated. MATERIALS AND METHODS: A total of 210 bar-shaped specimens (17 × 4 × 1.5 mm ± 0.02 mm) were fabricated via either subtractive manufacturing (SM) methods-reinforced composite resin (SM-CR), polymer-infiltrated ceramic network (SM-PICN), fine-structured feldspathic ceramic (SMFC), nanographene-reinforced polymethyl methacrylate (PMMA; SM-GPMMA), PMMAbased resin (SM-PMMA)-or additive manufacturing (AM) methods with urethane acrylate-based resins (AM-UA1 and AM-UA2). Specimens were then divided into two subgroups (nonaged or hydrothermal aging; n = 15). A three-point flexural strength test was performed, and five specimens from the nonaged group were submitted to microhardness testing. Specimens were subjected to 10,000 thermal cycles, and the measurements were repeated. RESULTS: Regardless of aging, SM-CR had the highest FS (P < .001), followed by SM-GPMMA (P ≤ .042). In nonaged groups, AM-UA2 had a lower FS than all other materials except SM-FC (P = 1.000). In hydrothermal aging groups, AM specimens had lower FS values than other materials, except SM-PMMA. With regard to microhardness, there was no significant difference found between any of the tested materials (P ≥ .945) in the nonaged and hydrothermal aging groups. CONCLUSIONS: The effect of hydrothermal aging on FS varied depending on the type of restorative material. Regardless of aging condition, SM-CR showed the highest FS values, whereas SM-FC had the highest microhardness. Hydrothermal aging had no significant influence on the microhardness of the tested materials.


Asunto(s)
Resistencia Flexional , Polimetil Metacrilato , Materiales Dentales , Resinas Compuestas , Polímeros , Ensayo de Materiales , Propiedades de Superficie , Diseño Asistido por Computadora
9.
Int J Prosthodont ; 37(7): 19-29, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38489217

RESUMEN

PURPOSE: To evaluate the effect of polymerization unit, polishing, and coffee thermocycling on the color and translucency of additively manufactured polyurethane-based resins with different viscosities. In addition, their color behavior was compared with the color of the shade tab throughout the fabrication steps and aging. MATERIALS AND METHODS: Disk-shaped specimens (Ø10 × 2 mm) were fabricated from polyurethane-based resins with different viscosities (Tera Harz TC-80DP and C&B permanent; n = 30 per material). Baseline color coordinates were measured after cleaning. The specimens in each resin group were divided into three subgroups (n = 10 per subgroup) to be polymerized with different polymerization units (Otoflash G171 [FLN], Wash and Cure 2.0 [CLED1], and P Cure [CLED2]), polished, and subjected to coffee thermocycling. Color coordinates were remeasured after each process. Color differences (ΔE00) and relative translucency parameter (RTP) values were calculated. Data were statistically analyzed (α = .05). RESULTS: Time points and polymerization units affected the ΔE00 for each material (P ≤ .049). ΔE00 of each polymerization unit pair had significant differences within and among different time points within each material (P ≤ .024). ΔE00 (when compared with the shade tab) and RTP were mostly affected by polymerization units and time points within both materials (P ≤ .042). CONCLUSIONS: Tested polymerization units, polishing, and coffee thermocycling affected the color difference and translucency of tested resins. Color differences ranged from moderately unacceptable to extremely unacceptable, and the differences in translucency values mostly ranged from perceptible to unacceptable, according to previous thresholds. In addition, tested resin-polymerization unit pairs had unacceptable color differences when compared to the shade tab. CLED1 may enable higher color stability for tested resins.


Asunto(s)
Café , Implantes Dentales , Polimerizacion , Poliuretanos , Color , Ensayo de Materiales , Propiedades de Superficie , Resinas Compuestas
10.
Dent Mater J ; 43(2): 216-226, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38417860

RESUMEN

This study aimed to investigate the effects of sandblasting on the physical properties and bond strength of two types of translucent zirconia: niobium-oxide-containing yttria-stabilized tetragonal zirconia polycrystals ((Y, Nb)-TZP) and 5 mol% yttria-partially stabilized zirconia (5Y-PSZ). Fully sintered disc specimens were either sandblasted with 125 µm alumina particles or left as-sintered. Surface roughness, crystal phase compositions, and surface morphology were explored. Biaxial flexural strength (n=10) and shear bond strength (SBS) (n=12) were evaluated, including thermocycling conditions. Results indicated a decrease in flexural strength of 5Y-PSZ from 601 to 303 MPa upon sandblasting, while (Y, Nb)-TZP improved from 458 to 544 MPa. Both materials significantly increased SBS after sandblasting (p<0.001). After thermocycling, (Y, Nb)-TZP maintained superior SBS (14.3 MPa) compared to 5Y-PSZ (11.3 MPa) (p<0.001). The study concludes that (Y, Nb)-TZP is preferable for sandblasting applications, particularly for achieving durable bonding without compromising flexural strength.


Asunto(s)
Materiales Dentales , Niobio , Óxidos , Materiales Dentales/química , Ensayo de Materiales , Propiedades de Superficie , Circonio/química , Itrio/química , Óxido de Aluminio , Resistencia al Corte
11.
J Dent ; 141: 104830, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38163455

RESUMEN

OBJECTIVES: This study compared the tooth morphology, internal fit, occlusion, and proximal contacts of dental crowns automatically generated via two deep learning (DL)-based dental software systems with those manually designed by an experienced dental technician using conventional software. METHODS: Thirty partial arch scans of prepared posterior teeth were used. The crowns were designed using two DL-based methods (AA and AD) and a technician-based method (NC). The crown design outcomes were three-dimensionally compared, focusing on tooth morphology, internal fit, occlusion, and proximal contacts, by calculating the geometric relationship. Statistical analysis utilized the independent t-test, Mann-Whitney test, one-way ANOVA, and Kruskal-Wallis test with post hoc pairwise comparisons (α = 0.05). RESULTS: The AA and AD groups, with the NC group as a reference, exhibited no significant tooth morphology discrepancies across entire external or occlusal surfaces. The AD group exhibited higher root mean square and positive average values on the axial surface (P < .05). The AD and NC groups exhibited a better internal fit than the AA group (P < .001). The cusp angles were similar across all groups (P = .065). The NC group yielded more occlusal contact points than the AD group (P = .006). Occlusal and proximal contact intensities varied among the groups (both P < .001). CONCLUSIONS: Crowns designed by using both DL-based software programs exhibited similar morphologies on the occlusal and axial surfaces; however, they differed in internal fit, occlusion, and proximal contacts. Their overall performance was clinically comparable to that of the technician-based method in terms of the internal fit and number of occlusal contact points. CLINICAL SIGNIFICANCE: DL-based dental software for crown design can streamline the digital workflow in restorative dentistry, ensuring clinically-acceptable outcomes on tooth morphology, internal fit, occlusion, and proximal contacts. It can minimize the necessity of additional design optimization by dental technician.


Asunto(s)
Aprendizaje Profundo , Porcelana Dental , Cerámica , Coronas , Diseño Asistido por Computadora , Diseño de Prótesis Dental/métodos , Adaptación Marginal Dental , Programas Informáticos
12.
J Prosthet Dent ; 131(2): 313.e1-313.e9, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37978007

RESUMEN

STATEMENT OF PROBLEM: Knowledge of the fabrication trueness and margin quality of additively manufactured (AM) laminate veneers (LVs) when different intraoral scanners (IOSs) and finish line locations are used is limited. PURPOSE: The purpose of this in vitro study was to evaluate the fabrication trueness and margin quality of AM LVs with different finish line locations digitized by using different IOSs. MATERIAL AND METHODS: An LV preparation with a subgingival (sub), equigingival (equi), or supragingival (supra) finish line was performed on 3 identical maxillary right central incisor typodont teeth. Each preparation was digitized by using 2 IOSs, (CEREC Primescan [PS] and TRIOS 3 [TS]), and a reference LV for each finish line-IOS pair (n=6) was designed. A total of 90 LVs were fabricated by using these files and urethane acrylate-based definitive resin (Tera Harz TC-80DP) (n=15). Each LV was then digitized by using PS to evaluate fabrication trueness (overall, external, intaglio, and marginal surfaces). Each LV was also qualitatively evaluated under a stereomicroscope (×60), and the cervical and incisal margin quality was graded. Fabrication trueness and cervical margin quality were evaluated by using 2-way analysis of variance, while Kruskal-Wallis and Mann Whitney-U tests were used to evaluate incisal margin quality (α=.05). RESULTS: The interaction between the IOS type and the finish line location affected measured deviations at each surface (P≤.020). PS-sub and TS-supra had higher overall trueness than their counterparts. and the subgingival finish line resulted in the lowest trueness (P≤.005). PS and the subgingival finish line led to the lowest trueness of the external surface (P≤.001). TS-sub had the lowest intaglio surface trueness among the TS subgroups, and PS-sub had higher trueness than TS-sub (P<.001). PS-sub and PS-supra had higher marginal surface trueness than their TS counterparts (P<.001). TS resulted in higher cervical margin quality (P=.001). CONCLUSIONS: Regardless of the IOS tested, subgingival finish lines resulted in the lowest trueness. The effect of IOS on the measured deviations varied according to the surface evaluated and finish line location. The cervical margin quality of AM LVs was higher when TS was used.


Asunto(s)
Diseño Asistido por Computadora , Imagenología Tridimensional , Flujo de Trabajo , Técnica de Impresión Dental , Modelos Dentales
13.
Int J Prosthodont ; 37(7): 143-150, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-37988420

RESUMEN

PURPOSE: To evaluate the effect of material thickness and coffee thermocycling on the optical properties of definitive resin-based materials created via additive manufacturing (AM) and subtractive manufacturing (SM). MATERIALS AND METHODS: Specimens were prepared in three thicknesses (1, 1.5, and 2 mm) from three AM (3D-CB, 3D-TH, and 3D-CT) and two SM (G-CAM and VE) resin-based materials (n = 15 per material and thickness combination). Color coordinates of each specimen were measured after polishing and after 10,000 cycles of coffee thermocycling. Color differences (ΔE00s) and relative translucency parameter (RTP) values were calculated. After logarithmic transformation, ΔE00 values were analyzed with two-way ANOVA, while RTP values were analyzed with generalized linear model test (α = .05). RESULTS: 3D-TH had the highest pooled ΔE00 and G-CAM had the lowest (P ≤ .004). 3D-CB had higher pooled ΔE00 than VE and 3D-CT (P ≤ .002). For the SM group, the 1.5-mm and 2-mm 3DCT specimens and 1-mm 3D-TH specimens had lower ΔE00 than 1.5-mm and 2-mm 3D-TH specimens (P ≤ .036). Most of the AM specimens and 1-mm VE specimens had higher ΔE00 than 2-mm G-CAM specimens (P ≤ .029). Further, most AM specimens had higher ΔE00 than 1.5-mm G-CAM specimens (P ≤ .006). RTP values increased in order of 3D-CT, G-CAM, VE, 3D-CB, and 3D-TH specimens (P < .001). Increased thickness and coffee thermocycling mostly reduced RTP (P < .001). CONCLUSIONS: 3D-TH typically had higher color change values than SM specimens, while G-CAM typically had lower color change values than AM specimens. Only the 1.5-mm and 2-mm 3D-TH specimens had unacceptable color changes. Thickness and coffee thermocycling mostly reduced the translucency.


Asunto(s)
Café , Diseño Asistido por Computadora , Color , Ensayo de Materiales , Propiedades de Superficie , Cerámica
14.
Int J Prosthodont ; 37(7): 99-107, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-37988421

RESUMEN

PURPOSE: To evaluate the fabrication trueness, intaglio surface adaptation, and marginal integrity of resin-based onlay restorations made via additive manufacturing (AM) or subtractive manufacturing (SM). MATERIALS AND METHODS: An onlay restoration was designed (DentalCAD Galway 3.0) and saved as an STL file to generate a design STL file (DO-STL). Using this design, 45 onlays were fabricated either with AM (3D-printed resin for definitive [AM-D; Tera Harz TC-80DP] and interim [AM-I; Freeprint temp] restorations) or SM (composite resin, Tetric CAD) technologies. Onlays were scanned with an intraoral scanner (CEREC Primescan SW 5.2), and the scans were saved as test STL files (TO-STLs). For trueness evaluation, TO-STLs were superimposed over the DO-STL, and root mean square (RMS) values of overall and intaglio surfaces were measured (Geomagic Control X). For the intaglio surface adaptation and marginal integrity, a triple-scan protocol was performed. Kolmogorov-Smirnov, one-way ANOVA, and post-hoc Tukey honestly significant difference tests were used to analyze data (α = .05). RESULTS: RMS values of intaglio and overall surfaces, intaglio adaptation, and marginal integrity varied among test groups (P < .001). AM-D had the greatest overall surface RMS (P < .001), while SM had the greatest intaglio surface RMS (P < .001). SM had the highest average distance deviations for intaglio surface adaptation and marginal integrity, whereas AM-D had the lowest (P < .001). CONCLUSIONS: AM-D onlays showed lower overall trueness than AM-I onlays and SM definitive onlays. However, AM-D onlays presented high intaglio surface trueness, intaglio surface adaptation, and marginal integrity.


Asunto(s)
Diseño Asistido por Computadora , Diseño de Prótesis Dental , Humanos , Diseño de Prótesis Dental/métodos , Adaptación Marginal Dental , Incrustaciones , Atención Odontológica
15.
J Dent ; 141: 104820, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38128820

RESUMEN

OBJECTIVES: This study aimed to investigate the antimicrobial properties of three dimensionally-printed dental polymers (3DPs) incorporated with microencapsulated phytochemicals (MPs) and to assess their surface characteristics and cytotoxicity. METHODS: MPs derived from phytoncide oil and their specific chemical components were introduced into suspensions of three microbial species: Streptococcus gordonii, Streptococcus oralis, and Candida albicans. Optical density was measured to determine the microbial growth in the presence of MPs for testing their antimicrobial activity. MPs at 5% (w/w) were mixed with dental polymers and dispersants to 3DP discs. These microbial species were then seeded onto the discs and incubated for 24 h. The antibacterial and antifungal activities of MP-containing 3DPs were evaluated by counting the colony-forming units (n = 3). The biofilm formation on the 3DP was assessed by crystal violet staining assay (n = 3). Microbial viability was determined using a live-dead staining and CLSM observation (n = 3). Surface roughness and water contact angle were assessed (n = 10). Cytotoxicity of MP-containing 3DPs for human gingival fibroblast was evaluated by MTT assay. RESULTS: MPs, particularly (-)-α-pinene, suppressed the growth of all tested microbial species. MP-containing 3DPs significantly reduced the colony count (P ≤ 0.001) and biofilm formation (P ≤ 0.009), of all tested microbial species. Both surface roughness (P < 0.001) and water contact angle (P < 0.001) increased. The cytotoxicity remained unchanged after incorporating MPs to the 3DPs (P = 0.310). CONCLUSIONS: MPs effectively controlled the microbial growth on 3DPs as evidenced by the colony count, biofilm formation, and cell viability. Although MPs modified the surface characteristics, they did not influence the cytotoxicity of 3DPs. CLINICAL SIGNIFICANCE: Integration of MPs into 3DPs could produce dental prostheses or appliances with antimicrobial properties. This approach not only provides a proactive solution to reduce the risk of oral biofilm-related infection but also ensures the safety and biocompatibility of the material, thereby improving dental care.


Asunto(s)
Antiinfecciosos , Biopelículas , Humanos , Propiedades de Superficie , Antiinfecciosos/farmacología , Candida albicans , Fitoquímicos/farmacología , Agua
16.
J Adv Prosthodont ; 15(5): 248-258, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37936835

RESUMEN

PURPOSE: This study aims to evaluate the effects of exposure energy on the lateral resolution and mechanical strength of dental zirconia manufactured using digital light processing (DLP). MATERIALS AND METHODS: A zirconia suspension and a custom top-down DLP printer were used for in-office manufacturing. The viscosity of the suspension and uniformity of the exposed light intensity were controlled. Based on the exposure energy dose delivered to each layer, the specimens were classified into three groups: low-energy (LE), medium-energy (ME), and high-energy (HE). For each energy group, a simplified molar cube was used to measure the widths of the outline (Xo and Yo) and isthmus (Xi and Yi), and a bar-shaped specimen of the sintered body was tested. A Kruskal-Wallis test for the lateral resolution and one-way analysis of variance for the mechanical strength were performed (α = .05). RESULTS: The zirconia green bodies of the ME group showed better lateral resolution than those of the LE and HE groups (both P < .001). Regarding the flexural strength of the sintered bodies, the ME group had the highest mean value, whereas the LE group had the lowest mean value (both P < .05). The ME group exhibited fewer agglomerates than the LE group, with no distinctive interlayer pores or surface defects. CONCLUSION: Based on these findings, the lateral resolution of the green body and flexural strength of the sintered body of dental zirconia could be affected by the exposure energy dose during DLP. The exposure energy should be optimized when fabricating DLP-based dental zirconia.

17.
J Dent ; 138: 104739, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37804938

RESUMEN

OBJECTIVES: To evaluate the time efficiency, occlusal morphology, and internal fit of dental crowns designed using generative adversarial network (GAN)-based dental software compared to conventional dental software. METHODS: Thirty datasets of partial arch scans for prepared posterior teeth were analyzed. Each crown was designed on each abutment using GAN-based software (AI) and conventional dental software (non-AI). The AI and non-AI groups were compared in terms of time efficiency by measuring the elapsed work time. The difference in the occlusal morphology of the crowns before and after design optimization and the internal fit of the crown to the prepared abutment were also evaluated by superimposition for each software. Data were analyzed using independent t tests or Mann-Whitney test with statistical significance (α=.05). RESULTS: The working time was significantly less for the AI group than the non-AI group at T1, T5, and T6 (P≤.043). The working time with AI was significantly shorter at T1, T3, T5, and T6 for the intraoral scan (P≤.036). Only at T2 (P≤.001) did the cast scan show a significant difference between the two groups. The crowns in the AI group showed less deviation in occlusal morphology and significantly better internal fit to the abutment than those in the non-AI group (both P<.001). CONCLUSIONS: Crowns designed by AI software showed improved outcomes than that designed by non-AI software, in terms of time efficiency, difference in occlusal morphology, and internal fit. CLINICAL SIGNIFICANCE: The GAN-based software showed better time efficiency and less deviation in occlusal morphology during the design process than the conventional software, suggesting a higher probability of optimized outcomes of crown design.


Asunto(s)
Coronas , Diseño de Prótesis Dental , Adaptación Marginal Dental , Diseño Asistido por Computadora , Programas Informáticos , Porcelana Dental
18.
Int J Prosthodont ; 0(0)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37824339

RESUMEN

PURPOSE: To evaluate the effect of polymerization unit, polishing, and coffee thermocycling on the color and translucency of additively manufactured polyurethane-based resins with different viscosities. In addition, their color behavior was compared with the color of the shade tab throughout the fabrication steps and aging. MATERIALS AND METHODS: Disk-shaped specimens (Ø10x2 mm) were fabricated from polyurethane-based resins with different viscosities (Tera Harz TC-80DP and C&B permanent) (N=30). Baseline color coordinates were measured after cleaning. The specimens were divided into 3 to be polymerized with different polymerization units (Otoflash G171, FLN; Wash and Cure 2.0, CLED1; CARES P Cure, CLED2) (n=10), polished, and subjected to coffee thermocycling. Color coordinates were remeasured after each process. Color differences (ΔE00) and relative translucency parameter (RTP) values were calculated. Data were statistically analyzed (α=.05). RESULTS: Time points and polymerization units affected the ΔE00 for each material (P≤.049). ΔE00 of each polymerization unit pair had significant differences within and among different time points within each material (P≤.024). ΔE00, when compared with the shade tab, and RTP were mostly affected by polymerization units and time points within both materials (P≤.042). CONCLUSION: Tested polymerization units, polishing, and coffee thermocycling affected the color difference and translucency of tested resins. Color differences ranged from moderately unacceptable to extremely unacceptable and the differences in translucency values mostly ranged from perceptible to unacceptable according to previous thresholds. In addition, tested resin-polymerization unit pairs had unacceptable color differences when compared to the shade tab. CLED1 may enable higher color stability for tested resins.

19.
Int J Implant Dent ; 9(1): 24, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37661243

RESUMEN

PURPOSE: The purpose of this in vitro study was to investigate the antibacterial effect and biocompatibility of silver coatings via aerosol deposition on titanium and zirconia surfaces. METHODS: The surfaces of titanium and zirconia specimens were polished and coated with silver via aerosol deposition. After silver coating, the elemental composition, surface roughness and amount of silver released from the coated surfaces were measured. The bacterial growth on the silver-coated surfaces was investigated via crystal violet assay after incubation with Streptococcus gordonii for 24 h, Fusobacterium nucleatum for 72 h and Porphyromonas gingivalis for 48 h. Human gingival fibroblasts and mouse preosteoblasts were also cultured on the silver-coated specimens to examine the biocompatibility of the coating. RESULTS: After silver coating via aerosol deposition, the surface roughness increased significantly, and the released silver ranged from 0.067 to 0.110 ppm. The tested bacteria formed significantly less biofilm on the silver-coated titanium surfaces than on the uncoated titanium surfaces. In contrast, biofilm formation on the silver-coated zirconia surfaces was greater than that on the uncoated zirconia surfaces. Human gingival fibroblasts and mouse preosteoblasts proliferated on the silver-coated surfaces without significant differences from the uncoated surfaces. CONCLUSIONS: Silver coating via aerosol deposition provided an antibacterial effect against oral bacteria on titanium surfaces, whereas it promoted more bacterial growth on zirconia surfaces. The proliferation of fibroblasts and osteoblasts was not significantly affected by the silver coating on both titanium and zirconia surfaces.


Asunto(s)
Plata , Titanio , Humanos , Animales , Ratones , Plata/farmacología , Aerosoles , Antibacterianos/farmacología
20.
J Dent Sci ; 18(3): 1212-1218, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37404663

RESUMEN

Background/purpose: Subsurface scattering from translucent material would affect the digital scans. This study aimed to evaluate the effect of translucency of ceramic restorative materials and scanning aid conditions on the accuracy of intraoral scans. Materials and methods: Identical anatomic contour crowns with ten ceramic restorative materials were fabricated: five zirconia, three lithium disilicate glass-ceramic, and two leucite reinforced glass-ceramic. The models with ceramic crowns were digitized with an intraoral scanner (IOS) and analyzed for accuracy (n = 10) with and without a scanning aid. Scan time efficiency was recorded. Square-shaped specimens with 1.0-mm thickness were fabricated with the same materials, and translucency parameter (TP) values were measured. One-way ANOVA, Welch ANOVA, and a post-hoc pairwise comparison or independent t-test were used for trueness and time analysis, and the F-test was used to examine the precision (α = 0.05). Pearson correlation test was conducted. Results: Significant differences were revealed for trueness with no scanning aid condition and for TP values (P < 0.05). In contrast, no statistically significant differences were observed for trueness with a scanning aid. A strong correlation (r = 0.854, P < 0.01) between TP value and trueness with no scanning aid was revealed. By applying a scanning aid, trueness was improved and scan time efficiency significantly increased (P < 0.05). Conclusion: The translucency of ceramic restorative materials negatively affects the accuracy of IOS scan without a scanning aid; however, the scan accuracy and time efficiency of IOS scanning for ceramic restorations can be improved by applying scanning aid, and prostheses with high quality without unnecessary labor can be produced.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA