Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Intervalo de año de publicación
1.
BMC Genomics ; 22(1): 57, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33451291

RESUMEN

BACKGROUND: Body traits are generally controlled by several genes in vertebrates (i.e. polygenes), which in turn make them difficult to identify through association mapping. Increasing the power of association studies by combining approaches such as genotype imputation and multi-trait analysis improves the ability to detect quantitative trait loci associated with polygenic traits, such as body traits. RESULTS: A multi-trait genome-wide association study (mtGWAS) was performed to identify quantitative trait loci (QTL) and genes associated with body traits in Nile tilapia (Oreochromis niloticus) using genotypes imputed to whole-genome sequences (WGS). To increase the statistical power of mtGWAS for the detection of genetic associations, summary statistics from single-trait genome-wide association studies (stGWAS) for eight different body traits recorded in 1309 animals were used. The mtGWAS increased the statistical power from the original sample size from 13 to 44%, depending on the trait analyzed. The better resolution of the WGS data, combined with the increased power of the mtGWAS approach, allowed the detection of significant markers which were not previously found in the stGWAS. Some of the lead single nucleotide polymorphisms (SNPs) were found within important functional candidate genes previously associated with growth-related traits in other terrestrial species. For instance, we identified SNP within the α1,6-fucosyltransferase (FUT8), solute carrier family 4 member 2 (SLC4A2), A disintegrin and metalloproteinase with thrombospondin motifs 9 (ADAMTS9) and heart development protein with EGF like domains 1 (HEG1) genes, which have been associated with average daily gain in sheep, osteopetrosis in cattle, chest size in goats, and growth and meat quality in sheep, respectively. CONCLUSIONS: The high-resolution mtGWAS presented here allowed the identification of significant SNPs, linked to strong functional candidate genes, associated with body traits in Nile tilapia. These results provide further insights about the genetic variants and genes underlying body trait variation in cichlid fish with high accuracy and strong statistical support.


Asunto(s)
Cíclidos , Estudio de Asociación del Genoma Completo , Animales , Bovinos , Cíclidos/genética , Genotipo , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Ovinos
2.
Sci Rep ; 10(1): 11514, 2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-32661317

RESUMEN

Nile tilapia belongs to the second most cultivated group of fish in the world, mainly because of its favorable characteristics for production. Genetic improvement programs and domestication process of Nile tilapia may have modified the genome through selective pressure, leaving signals that can be detected at the molecular level. In this work, signatures of selection were identified using genome-wide SNP data, by two haplotype-based (iHS and Rsb) and one FST based method. Whole-genome re-sequencing of 326 individuals from three strains (A, B and C) of farmed tilapia maintained in Brazil and Costa Rica was carried out using Illumina HiSeq 2500 technology. After applying conventional SNP-calling and quality-control filters, ~ 1.3 M high-quality SNPs were inferred and used as input for the iHS, Rsb and FST based methods. We detected several candidate genes putatively subjected to selection in each strain. A considerable number of these genes are associated with growth (e.g. NCAPG, KLF3, TBC1D1, TTN), early development (e.g. FGFR3, PFKFB3), and immunity traits (e.g. NLRC3, PIGR, MAP1S). These candidate genes represent putative genomic landmarks that could be associated to traits of biological and commercial interest in farmed Nile tilapia.


Asunto(s)
Genoma/genética , Selección Genética/genética , Tilapia/genética , Animales , Acuicultura , Brasil , Costa Rica , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Fenotipo , Secuenciación Completa del Genoma/métodos
3.
Genes (Basel) ; 11(5)2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32365758

RESUMEN

The characterization of runs of homozygosity (ROH), using high-density single nucleotide polymorphisms (SNPs) allows inferences to be made about the past demographic history of animal populations and the genomic ROH has become a common approach to characterize the inbreeding. We aimed to analyze and characterize ROH patterns and compare different genomic and pedigree-based methods to estimate the inbreeding coefficient in two pure lines (POP A and B) and one recently admixed line (POP C) of coho salmon (Oncorhynchus kisutch) breeding nuclei, genotyped using a 200 K Affymetrix Axiom® myDesign Custom SNP Array. A large number and greater mean length of ROH were found for the two "pure" lines and the recently admixed line (POP C) showed the lowest number and smaller mean length of ROH. The ROH analysis for different length classes suggests that all three coho salmon lines the genome is largely composed of a high number of short segments (<4 Mb), and for POP C no segment >16 Mb was found. A high variable number of ROH, mean length and inbreeding values across chromosomes; positively the consequence of artificial selection. Pedigree-based inbreeding values tended to underestimate genomic-based inbreeding levels, which in turn varied depending on the method used for estimation. The high positive correlations between different genomic-based inbreeding coefficients suggest that they are consistent and may be more accurate than pedigree-based methods, given that they capture information from past and more recent demographic events, even when there are no pedigree records available.


Asunto(s)
Genoma/genética , Genómica , Endogamia , Oncorhynchus kisutch/genética , Animales , Cruzamiento , Explotaciones Pesqueras , Genotipo , Homocigoto , Linaje , Polimorfismo de Nucleótido Simple/genética
4.
Front Genet ; 10: 745, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31552083

RESUMEN

Nile tilapia (Oreochromis niloticus) is one of the most produced farmed fish in the world and represents an important source of protein for human consumption. Farmed Nile tilapia populations are increasingly based on genetically improved stocks, which have been established from admixed populations. To date, there is scarce information about the population genomics of farmed Nile tilapia, assessed by dense single nucleotide polymorphism (SNP) panels. The patterns of linkage disequilibrium (LD) may affect the success of genome-wide association studies (GWAS) and genomic selection (GS), and also provide key information about demographic history of farmed Nile tilapia populations. The objectives of this study were to provide further knowledge about the population structure and LD patterns, as well as, estimate the effective population size (N e ) for three farmed Nile tilapia populations, one from Brazil (POP A) and two from Costa Rica (POP B and POP C). A total of 55 individuals from each population, were genotyped using a 50K SNP panel selected from a whole-genome sequencing (WGS) experiment. The first two principal components explained about 20% of the total variation and clearly differentiated between the three populations. Population genetic structure analysis showed evidence of admixture, especially for POP C. The contemporary N e estimated, based on LD values, ranged from 78 to 159. No differences were observed in the LD decay among populations, with a rapid decrease of r 2 with increasing inter-marker distance. Average r 2 between adjacent SNP pairs ranged from 0.19 to 0.03 for both POP A and C, and 0.20 to 0.03 f or POP B. Based on the number of independent chromosome segments in the Nile tilapia genome, at least 9.4, 7.6, and 4.6K SNPs for POP A, POP B, and POP C respectively, are required for the implementation of GS in the present farmed Nile tilapia populations.

5.
G3 (Bethesda) ; 9(10): 3213-3223, 2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31416805

RESUMEN

Nile tilapia (Oreochromis niloticus) is one of the most cultivated and economically important species in world aquaculture. Intensive production promotes the use of monosex animals, due to an important dimorphism that favors male growth. Currently, the main mechanism to obtain all-male populations is the use of hormones in feeding during larval and fry phases. Identifying genomic regions associated with sex determination in Nile tilapia is a research topic of great interest. The objective of this study was to identify genomic variants associated with sex determination in three commercial populations of Nile tilapia. Whole-genome sequencing of 326 individuals was performed, and a total of 2.4 million high-quality bi-allelic single nucleotide polymorphisms (SNPs) were identified after quality control. A genome-wide association study (GWAS) was conducted to identify markers associated with the binary sex trait (males = 1; females = 0). A mixed logistic regression GWAS model was fitted and a genome-wide significant signal comprising 36 SNPs, spanning a genomic region of 536 kb in chromosome 23 was identified. Ten out of these 36 genetic variants intercept the anti-Müllerian (Amh) hormone gene. Other significant SNPs were located in the neighboring Amh gene region. This gene has been strongly associated with sex determination in several vertebrate species, playing an essential role in the differentiation of male and female reproductive tissue in early stages of development. This finding provides useful information to better understand the genetic mechanisms underlying sex determination in Nile tilapia.


Asunto(s)
Hormona Antimülleriana/genética , Mapeo Cromosómico , Cíclidos/genética , Estudio de Asociación del Genoma Completo , Procesos de Determinación del Sexo/genética , Secuenciación Completa del Genoma , Animales , Femenino , Genotipo , Masculino , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable
6.
Front Genet ; 10: 665, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31428125

RESUMEN

Piscirickettsia salmonis is the etiologic agent of salmon rickettsial syndrome (SRS) and is responsible for considerable economic losses in salmon aquaculture. The bacterium affects coho salmon (CS; Oncorhynchus kisutch), Atlantic salmon (AS; Salmo salar), and rainbow trout (RT; Oncorhynchus mykiss) in several countries, including Norway, Canada, Scotland, Ireland, and Chile. We used Bayesian genome-wide association study analyses to investigate the genetic architecture of resistance to P. salmonis in farmed populations of these species. Resistance to SRS was defined as the number of days to death and as binary survival (BS). A total of 828 CS, 2130 RT, and 2601 AS individuals were phenotyped and then genotyped using double-digest restriction site-associated DNA sequencing and 57K and 50K Affymetrix® Axiom® single nucleotide polymorphism (SNP) panels, respectively. Both traits of SRS resistance in CS and RT appeared to be under oligogenic control. In AS, there was evidence of polygenic control of SRS resistance. To identify candidate genes associated with resistance, we applied a comparative genomics approach in which we systematically explored the complete set of genes adjacent to SNPs, which explained more than 1% of the genetic variance of resistance in each salmonid species (533 genes in total). Thus, genes were classified based on the following criteria: i) shared function of their protein domains among species, ii) shared orthology among species, iii) proximity to the SNP explaining the highest proportion of the genetic variance, and iv) presence in more than one genomic region explaining more than 1% of the genetic variance within species. Our results allowed us to identify 120 candidate genes belonging to at least one of the four criteria described above. Of these, 21 of them were part of at least two of the criteria defined above and are suggested to be strong functional candidates influencing P. salmonis resistance. These genes are related to diverse biological processes, such as kinase activity, GTP hydrolysis, helicase activity, lipid metabolism, cytoskeletal dynamics, inflammation, and innate immune response, which seem essential in the host response against P. salmonis infection. These results provide fundamental knowledge on the potential functional genes underpinning resistance against P. salmonis in three salmonid species.

7.
G3 (Bethesda) ; 9(9): 2897-2904, 2019 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-31324747

RESUMEN

Infectious pancreatic necrosis (IPN) is a viral disease with considerable negative impact on the rainbow trout (Oncorhynchus mykiss) aquaculture industry. The aim of the present work was to detect genomic regions that explain resistance to infectious pancreatic necrosis virus (IPNV) in rainbow trout. A total of 2,278 fish from 58 full-sib families were challenged with IPNV and 768 individuals were genotyped (488 resistant and 280 susceptible), using a 57K SNP panel Axiom, Affymetrix. A genome-wide association study (GWAS) was performed using the phenotypes time to death (TD) and binary survival (BS), along with the genotypes of the challenged fish using a Bayesian model (Bayes C). Heritabilities for resistance to IPNV estimated using genomic information, were 0.53 and 0.82 for TD and BS, respectively. The Bayesian GWAS detected a SNP located on chromosome 5 explaining 19% of the genetic variance for TD. The proximity of Sentrin-specific protease 5 (SENP5) to this SNP makes it a candidate gene for resistance against IPNV. In case of BS, a SNP located on chromosome 23 was detected explaining 9% of the genetic variance. However, the moderate-low proportion of variance explained by the detected marker leads to the conclusion that the incorporation of all genomic information, through genomic selection, would be the most appropriate approach to accelerate genetic progress for the improvement of resistance against IPNV in rainbow trout.


Asunto(s)
Resistencia a la Enfermedad/genética , Enfermedades de los Peces/virología , Proteínas de Peces/genética , Virus de la Necrosis Pancreática Infecciosa/fisiología , Oncorhynchus mykiss/genética , Animales , Teorema de Bayes , Infecciones por Birnaviridae/genética , Infecciones por Birnaviridae/inmunología , Infecciones por Birnaviridae/mortalidad , Infecciones por Birnaviridae/veterinaria , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/mortalidad , Proteínas de Peces/inmunología , Estudio de Asociación del Genoma Completo , Interacciones Huésped-Patógeno/genética , Virus de la Necrosis Pancreática Infecciosa/patogenicidad , Oncorhynchus mykiss/inmunología , Oncorhynchus mykiss/virología , Polimorfismo de Nucleótido Simple , Replicación Viral/fisiología
8.
G3 (Bethesda) ; 8(4): 1183-1194, 2018 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-29440129

RESUMEN

Piscirickettsia salmonis is one of the main infectious diseases affecting coho salmon (Oncorhynchus kisutch) farming, and current treatments have been ineffective for the control of this disease. Genetic improvement for P. salmonis resistance has been proposed as a feasible alternative for the control of this infectious disease in farmed fish. Genotyping by sequencing (GBS) strategies allow genotyping of hundreds of individuals with thousands of single nucleotide polymorphisms (SNPs), which can be used to perform genome wide association studies (GWAS) and predict genetic values using genome-wide information. We used double-digest restriction-site associated DNA (ddRAD) sequencing to dissect the genetic architecture of resistance against P. salmonis in a farmed coho salmon population and to identify molecular markers associated with the trait. We also evaluated genomic selection (GS) models in order to determine the potential to accelerate the genetic improvement of this trait by means of using genome-wide molecular information. A total of 764 individuals from 33 full-sib families (17 highly resistant and 16 highly susceptible) were experimentally challenged against P. salmonis and their genotypes were assayed using ddRAD sequencing. A total of 9,389 SNPs markers were identified in the population. These markers were used to test genomic selection models and compare different GWAS methodologies for resistance measured as day of death (DD) and binary survival (BIN). Genomic selection models showed higher accuracies than the traditional pedigree-based best linear unbiased prediction (PBLUP) method, for both DD and BIN. The models showed an improvement of up to 95% and 155% respectively over PBLUP. One SNP related with B-cell development was identified as a potential functional candidate associated with resistance to P. salmonis defined as DD.


Asunto(s)
ADN/genética , Resistencia a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Genómica , Oncorhynchus kisutch/genética , Oncorhynchus kisutch/microbiología , Piscirickettsia/fisiología , Mapeo Restrictivo/métodos , Animales , Cruzamiento , Femenino , Enfermedades de los Peces/genética , Enfermedades de los Peces/microbiología , Marcadores Genéticos , Estimación de Kaplan-Meier , Masculino , Linaje
9.
G3 (Bethesda) ; 8(2): 719-726, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29255117

RESUMEN

Salmonid rickettsial syndrome (SRS), caused by the intracellular bacterium Piscirickettsia salmonis, is one of the main diseases affecting rainbow trout (Oncorhynchus mykiss) farming. To accelerate genetic progress, genomic selection methods can be used as an effective approach to control the disease. The aims of this study were: (i) to compare the accuracy of estimated breeding values using pedigree-based best linear unbiased prediction (PBLUP) with genomic BLUP (GBLUP), single-step GBLUP (ssGBLUP), Bayes C, and Bayesian Lasso (LASSO); and (ii) to test the accuracy of genomic prediction and PBLUP using different marker densities (0.5, 3, 10, 20, and 27 K) for resistance against P. salmonis in rainbow trout. Phenotypes were recorded as number of days to death (DD) and binary survival (BS) from 2416 fish challenged with P. salmonis A total of 1934 fish were genotyped using a 57 K single-nucleotide polymorphism (SNP) array. All genomic prediction methods achieved higher accuracies than PBLUP. The relative increase in accuracy for different genomic models ranged from 28 to 41% for both DD and BS at 27 K SNP. Between different genomic models, the highest relative increase in accuracy was obtained with Bayes C (∼40%), where 3 K SNP was enough to achieve a similar accuracy to that of the 27 K SNP for both traits. For resistance against P. salmonis in rainbow trout, we showed that genomic predictions using GBLUP, ssGBLUP, Bayes C, and LASSO can increase accuracy compared with PBLUP. Moreover, it is possible to use relatively low-density SNP panels for genomic prediction without compromising accuracy predictions for resistance against P. salmonis in rainbow trout.


Asunto(s)
Resistencia a la Enfermedad/genética , Enfermedades de los Peces/genética , Genómica/métodos , Oncorhynchus mykiss/genética , Infecciones por Piscirickettsiaceae/genética , Animales , Teorema de Bayes , Enfermedades de los Peces/microbiología , Estudio de Asociación del Genoma Completo , Genotipo , Oncorhynchus mykiss/microbiología , Fenotipo , Piscirickettsia/fisiología , Infecciones por Piscirickettsiaceae/microbiología , Polimorfismo de Nucleótido Simple
10.
An Acad Bras Cienc ; 89(3 Suppl): 2515-2523, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29166535

RESUMEN

Genetic parameters for reproductive traits in female Nile tilapia were estimated in this study using Bayesian inference method. The data set presented information from 451 Nile tilapia females that were evaluated at two different places in Maringá - Paraná - Brazil (hapas of 1 and 10 m³) and at one location in Alfenas - Minas Gerais - Brazil. A spawning examination was conducted once a week from October 2012 to March 2013 for a total of 23 weeks of evaluation. Single-trait analyses for spawning success, multiple spawning, spawning frequency, and volume of eggs/female were performed by using the software MTGSAM Threshold. The heritability estimates were 0.14, 0.16, 0.53, and 0.08 for spawning success, multiple spawning, spawning frequency and volume of eggs/female, respectively, indicating it is possible to achieve a substantial genetic gain using these reproductive traits as selection criteria.


Asunto(s)
Cíclidos/genética , Genitales Femeninos , Oviposición/genética , Carácter Cuantitativo Heredable , Reproducción/genética , Animales , Teorema de Bayes , Cíclidos/anatomía & histología , Cíclidos/fisiología , Femenino , Oviposición/fisiología , Fenotipo , Reproducción/fisiología
11.
An. acad. bras. ciênc ; 89(3,supl): 2515-2523, 2017. tab
Artículo en Inglés | LILACS | ID: biblio-886806

RESUMEN

ABSTRACT Genetic parameters for reproductive traits in female Nile tilapia were estimated in this study using Bayesian inference method. The data set presented information from 451 Nile tilapia females that were evaluated at two different places in Maringá - Paraná - Brazil (hapas of 1 and 10 m³) and at one location in Alfenas - Minas Gerais - Brazil. A spawning examination was conducted once a week from October 2012 to March 2013 for a total of 23 weeks of evaluation. Single-trait analyses for spawning success, multiple spawning, spawning frequency, and volume of eggs/female were performed by using the software MTGSAM Threshold. The heritability estimates were 0.14, 0.16, 0.53, and 0.08 for spawning success, multiple spawning, spawning frequency and volume of eggs/female, respectively, indicating it is possible to achieve a substantial genetic gain using these reproductive traits as selection criteria.


Asunto(s)
Animales , Femenino , Oviposición/genética , Reproducción/genética , Carácter Cuantitativo Heredable , Cíclidos/genética , Genitales Femeninos , Oviposición/fisiología , Fenotipo , Reproducción/fisiología , Teorema de Bayes , Cíclidos/anatomía & histología , Cíclidos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA