Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 890
Filtrar
1.
Adv Sci (Weinh) ; : e2405154, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39159072

RESUMEN

Electrochemical CO2 reduction reaction (CO2RR) to produce value-added multi-carbon chemicals has been an appealing approach to achieving environmentally friendly carbon neutrality in recent years. Despite extensive research focusing on the use of CO2 to produce high-value chemicals like high-energy-density hydrocarbons, there have been few reports on the production of propane (C3H8), which requires carbon chain elongation and protonation. A rationally designed 0D/2D hybrid Cu2O anchored-Ti3C2Tx MXene catalyst (Cu2O/MXene) is demonstrated with efficient CO2RR activity in an aqueous electrolyte to produce C3H8. As a result, a significantly high Faradaic efficiency (FE) of 3.3% is achieved for the synthesis of C3H8 via the CO2RR with Cu2O/MXene, which is ≈26 times higher than that of Cu/MXene prepared by the same hydrothermal process without NH4OH solution. Based on in-situ attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and density functional theory (DFT) calculations, it is proposed that the significant electrocatalytic conversion originated from the synergistic behavior of the Cu2O nanoparticles, which bound the *C2 intermediates, and the MXene that bound the *CO coupling to the C3 intermediate. The results disclose that the rationally designed MXene-based hybrid catalyst facilitates multi-carbon coupling as well as protonation, thereby manipulating the CO2RR pathway.

2.
World J Microbiol Biotechnol ; 40(10): 303, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39153119

RESUMEN

Dye-decolorizing peroxidases (DyPs) belong to a novel superfamily of heme peroxidases that can oxidize recalcitrant compounds. In the current study, the GlDyP2 gene from Ganoderma lucidum was heterologously expressed in Escherichia coli, and the enzymatic properties of the recombinant GlDyP2 protein were investigated. The GlDyP2 protein could oxidize not only the typical peroxidase substrate ABTS but also two lignin substrates, namely guaiacol and 2,6-dimethoxy phenol (DMP). For the ABTS substrate, the optimum pH and temperature of GlDyP2 were 4.0 and 35 °C, respectively. The pH stability and thermal stability of GlDyP2 were also measured; the results showed that GlDyP2 could function normally in the acidic environment, with a T50 value of 51 °C. Moreover, compared to untreated controls, the activity of GlDyP2 was inhibited by 1.60 mM of Mg2+, Ni2+, Mn2+, and ethanol; 0.16 mM of Cu2+, Zn2+, methanol, isopropyl alcohol, and Na2EDTA·2H2O; and 0.016 mM of Fe2+ and SDS. The kinetic constants of recombinant GlDyP2 for oxidizing ABTS, Reactive Blue 19, guaiacol, and DMP were determined; the results showed that the recombination GlDyP2 exhibited the strongest affinity and the most remarkable catalytic efficiency towards guaiacol in the selected substrates. GlDyP2 also exhibited decolorization and detoxification capabilities towards several dyes, including Reactive Blue 19, Reactive Brilliant Blue X-BR, Reactive Black 5, Methyl Orange, Trypan Blue, and Malachite Green. In conclusion, GlDyP2 has good application potential for treating dye wastewater.


Asunto(s)
Colorantes , Estabilidad de Enzimas , Escherichia coli , Guayacol , Proteínas Recombinantes , Reishi , Temperatura , Colorantes/metabolismo , Colorantes/química , Reishi/genética , Reishi/enzimología , Reishi/metabolismo , Concentración de Iones de Hidrógeno , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Guayacol/metabolismo , Guayacol/análogos & derivados , Biodegradación Ambiental , Cinética , Benzotiazoles/metabolismo , Especificidad por Sustrato , Lignina/metabolismo , Oxidación-Reducción , Peroxidasa/genética , Peroxidasa/metabolismo , Peroxidasa/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Peroxidasas/genética , Peroxidasas/metabolismo , Peroxidasas/química , Contaminantes Químicos del Agua/metabolismo , Compuestos Azo/metabolismo , Aguas Residuales/microbiología , Aguas Residuales/química , Ácidos Sulfónicos/metabolismo , Antraquinonas , Colorantes de Rosanilina
3.
Plant Sci ; 348: 112212, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39134122

RESUMEN

Monoterpenoids are the main components of Mentha canadensis essential oil. Monoterpene biosynthetic pathways have been explored, but the regulatory mechanisms remain unclarified. We identified an abscisic acid (ABA)-inducible A-type basic leucine zipper (bZIP) transcription factor McbZIP1 that was localized in the nucleus and positively regulates monoterpene synthesis. McbZIP1 was expressed in most M. canadensis tissues and was induced under ABA, mannitol, and NaCl treatments. McbZIP1 had transcriptional activity in yeast and the N terminus (amino acids 75-117) was sufficient for transactivation. Yeast one-hybrid and Dual-Luciferase assays showed that McbZIP1 binds to ABA-responsive elements in the promoter region of limonene synthase gene. Yeast two-hybrid and biomolecular fluorescence complementation assays revealed that McbZIP1 interacts with McSnRK2.4. Overexpression of McbZIP1 in peppermint resulted in dramatically up-regulated monoterpene biosynthesis gene levels and increased menthol contents. The results support a transcriptional regulation mechanism in which McbZIP1 serves as a positive regulator of menthol biogenesis. These findings contribute to the molecular mechanism of monoterpenoid biogenesis, which may have uses in genetic engineering and menthol production.

4.
Adv Sci (Weinh) ; : e2404419, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39018250

RESUMEN

Herein, hierarchically structured microgrid frameworks of Co3O4 and carbon composite deposited on reduced graphene oxide (Co3O4@C/rGO) are demonstrated through the three-dimensioinal (3D) printing method, where the porous structure is controllable and the height and width are scalable, for dendrite-free Na metal deposition. The sodiophilicity, facile Na metal deposition kinetics, and NaF-rich solid electrolyte interphase (SEI) formation of cubic Co3O4 phase are confirmed by combined spectroscopic and computational analyses. Moreover, the uniform and reversible Na plating/stripping process on 3D-printed Co3O4@C/rGO host is monitored in real time using in situ transmission electron and optical microscopies. In symmetric cells, the 3D printed Co3O4@C/rGO electrode achieves a long-term stability over 3950 at 1 mA cm-2 and 1 mAh cm-2 with a superior Coulombic efficiency (CE) of 99.87% as well as 120 h even at 20 mA cm-2 and 20 mAh cm-2, far exceeding the previously reported carbon-based hosts for Na metal anodes. Consequently, the full cells of 3D-printed Na@Co3O4@C/rGO anode with 3D-printed Na3V2(PO4)3@C-rGO cathode (≈15.7 mg cm-2) deliver the high specific capacity of 97.97 mAh g-1 after 500 cycles with a high CE of 99.89% at 0.5 C, demonstrating the real operation of flexible Na metal batteries.

5.
medRxiv ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38947072

RESUMEN

Background: Persisting HIV reservoir viruses in resting CD4 T cells and other cellular subsets are the main barrier to cure efforts. Antiretroviral therapy (ART) intensification by early initiation has been shown to enable post-treatment viral control in some cases but the underlying mechanisms are not fully understood. We hypothesized that ART initiated during the hyperacute phase of infection before peak will affect the size, decay dynamics and landscape characteristics of HIV-1 subtype C viral reservoirs. Methods: We studied 35 women at high risk of infection from Durban, South Africa identified with hyperacute HIV infection by twice weekly testing for plasma HIV-1 RNA. Study participants included 11 who started ART at a median of 456 (297-1203) days post onset of viremia (DPOV), and 24 who started ART at a median of 1 (1-3) DPOV. We used peripheral blood mononuclear cells (PBMC) to measure total HIV-1 DNA by ddPCR and to sequence reservoir viral genomes by full length individual proviral sequencing (FLIP-seq) from onset of detection of HIV up to 1 year post treatment initiation. Results: Whereas ART in hyperacute infection blunted peak viremia compared to untreated individuals (p<0.0001), there was no difference in total HIV-1 DNA measured contemporaneously (p=0.104). There was a steady decline of total HIV DNA in early treated persons over 1 year of ART (p=0.0004), with no significant change observed in the late treated group. Total HIV-1 DNA after one year of treatment was lower in the early treated compared to the late treated group (p=0.02). Generation of 697 single viral genome sequences revealed a difference in the longitudinal proviral genetic landscape over one year between untreated, late treated, and early treated infection: the relative contribution of intact genomes to the total pool of HIV-1 DNA after 1 year was higher in untreated infection (31%) compared to late treated (14%) and early treated infection (0%). Treatment initiated in both late and early infection resulted in a more rapid decay of intact (13% and 51% per month) versus defective (2% and 35% per month) viral genomes. However, intact genomes were still observed one year post chronic treatment initiation in contrast to early treatment where intact genomes were no longer detectable. Moreover, early ART reduced phylogenetic diversity of intact genomes and limited the seeding and persistence of cytotoxic T lymphocyte immune escape variants in the reservoir. Conclusions: Overall, our results show that whereas ART initiated in hyperacute HIV-1 subtype C infection did not impact reservoir seeding, it was nevertheless associated with more rapid decay of intact viral genomes, decreased genetic complexity and immune escape in reservoirs, which could accelerate reservoir clearance when combined with other interventional strategies.

6.
JCI Insight ; 9(16)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980725

RESUMEN

BACKGROUNDWe evaluated the safety and viral rebound, after analytical treatment interruption (ATI), of vedolizumab and ART in recent HIV-1 infection. We used this model to analyze the effect of α4ß7 on the HIV-1 reservoir size.METHODSParticipants started ART with monthly vedolizumab infusions, and ATI was performed at week 24. Biopsies were obtained from ileum and cecum at baseline and week 24. Vedolizumab levels, HIV-1 reservoir, flow cytometry, and cell-sorting and antibody competition experiments were assayed.RESULTSVedolizumab was safe and well tolerated. No participant achieved undetectable viremia off ART 24 weeks after ATI. Only a modest effect on the time to achieve more than 1,000 HIV-1 RNA copies/mL and the proportion of participants off ART was observed, being higher in the vedolizumab group compared with historical controls. Just before ATI, α4ß7 expression was associated with HIV-1 DNA and RNA in peripheral blood and with PD1 and TIGIT levels. Importantly, a complete blocking of α4ß7 was observed on peripheral CD4+ T cells but not in gut (ileum and cecum), where α4ß7 blockade and vedolizumab levels were inversely associated with HIV-1 DNA.CONCLUSIONOur findings support α4ß7 as an important determinant in HIV-1 reservoir size, suggesting the complete α4ß7 blockade in tissue as a promising tool for HIV-cure combination strategies.TRIAL REGISTRATIONClinicalTrials.gov NCT03577782.FUNDINGThis work was supported by the Instituto de Salud Carlos III (Fondo Europeo de Desarrollo Regional, "a way to make Europe," research contracts FI17/00186 and FI19/00083 and research projects PI18/01532, PI19/01127, PI22/01796), Conserjería de Economía, Conocimiento, Empresas y Universidad, Junta de Andalucía (research projects P20/00906), the Red Temática de Investigación Cooperativa en SIDA (RD16/0025/0020), and the Spanish National Research Council.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Infecciones por VIH , VIH-1 , Carga Viral , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fármacos Anti-VIH/uso terapéutico , Fármacos Anti-VIH/administración & dosificación , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/administración & dosificación , Linfocitos T CD4-Positivos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , Íleon/metabolismo , Íleon/virología , Integrinas/metabolismo , ARN Viral/sangre , Carga Viral/efectos de los fármacos
7.
Chem Sci ; 15(28): 11013-11020, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39027296

RESUMEN

The electrocatalytic methanol oxidation reaction (MOR) is a viable approach for realizing high value-added formate transformation from biomass byproducts. However, usually it is restricted by the excess adsorption of intermediates (COad) and overoxidation of catalysts, which results in low product selectivity and inactivation of the active sites. Herein, a novel Cu-O-Ni electron-transfer channel was constructed by loading NiCuO x on nickel foam (NF) to inhibit the overoxidation of Ni and enhance the formate selectivity of the MOR. The optimized NiCuO x -2/NF demonstrated excellent MOR catalytic performance at industrial current density (E 500 = 1.42 V) and high faradaic efficiency of ∼100%, as well as durable formate generation up to 600 h at ∼500 mA cm-2. The directional electron transfer from Cu to Ni and enhanced lattice stability could alleviate the overoxidation of Ni(iii) active sites to guarantee reversible Ni(ii)/Ni(iii) cycles and endow NiCuO x -2/NF with high stability under increased current density, respectively. An established electrolytic cell created by coupling the MOR with the hydrogen evolution reaction could produce H2 with low electric consumption (230 mV lower voltage at 400 mA cm-2) and concurrently generated the high value-added product of formate at the anode.

8.
Med ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39013460

RESUMEN

Exceptional elite controllers represent an extremely rare group of people with HIV-1 (PWH) who exhibit spontaneous, high-level control of viral replication below the limits of detection in sensitive clinical monitoring assays and without disease progression in the absence of antiretroviral therapy for prolonged periods, frequently exceeding 25 years. Here, we discuss the different cases that have been reported in the scientific literature, their unique genetic, virological, and immunological characteristics, and their relevance as the best model for the functional cure of HIV-1.

9.
Adv Sci (Weinh) ; 11(31): e2404269, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38874326

RESUMEN

Artificial light-harvesting systems (LHSs) with a multi-step sequential energy transfer mechanism significantly enhance light energy utilization. Nonetheless, most of these systems exhibit an overall energy transfer efficiency below 80%. Moreover, due to challenges in molecularly aligning multiple donor/acceptor chromophores, systems featuring ≥3-step sequential energy transfer are rarely reported. Here, a series of artificial LHSs is introduced featuring up to 4-step energy transfer mechanism, constructed using a cyclic peptide-based supramolecular scaffold. These LHSs showed remarkably high energy transfer efficiencies (≥90%) and satisfactory fluorescence quantum yields (ranging from 17.6% to 58.4%). Furthermore, the structural robustness of the supramolecular scaffold enables a comprehensive study of these systems, elucidating the associated energy transfer pathways, and identifying additional energy transfer processes beyond the targeted sequential energy transfer. Overall, this comprehensive investigation not only enhances the understanding of these LHSs, but also underscores the versatility of cyclic peptide-based supramolecular scaffolds in advancing energy harvesting technologies.

10.
Ecol Evol ; 14(5): e11319, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38694746

RESUMEN

The family Limacodidae belongs to the superfamily Zygaenoidea, which includes 1672 species commonly referred to as slug moths. Limacodidae larvae are major pests for many economically important plant species and can cause human dermatitis. At present, the structure of the mitochondrial genome (mitogenome), phylogenetic position, and adaptive evolution of slug moths are poorly understood. Herein, the mitogenomes of Parasa lepida, Phlossa conjuncta, Thosea sinensis, and Setora sinensis were sequenced and compared with other available mitogenome sequences to better characterize the mitogenomic diversity and evolution of this moth family. The mitogenomes of P. lepida, P. conjuncta, T. sinensis, and S. sinensis were confirmed to be circular in structure with lengths of 15,575 bp, 15,553 bp, 15,535 bp, and 15,529 bp, respectively. The Limacodidae mitogenomes exhibited similar nucleotide composition, codon usage, RNA structure, and control region patterns, indicating the conservation of the mitogenome in the family Limacodidae. A sliding window, Ka/Ks, and genetic distance analyses revealed that the atp8 and nad6 genes exhibited the highest levels of variability and the most rapid evolutionary rates among the 13 protein-coding genes (PCGs) encoded in these Limacodidae mitogenomes, suggesting that they may offer value as candidate DNA markers. The phylogenetic analysis recovered the overall relationship as Tortricoidea + (Sesiidae + (Zygaenoidea + (Cossoidea/+Choreutoidea + (others)))). Within Zygaenoidea, Limacodidae was recovered as monophyletic, and the phylogenetic relationships were recovered as (Phaudidae + Zyganidae) + Limacodidae in all six phylogenetic trees. The analysis indicated that P. lepida, P. conjuncta, T. sinensis, and S. sinensis are members of the Limacodidae.

11.
ACS Omega ; 9(19): 21440-21449, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38764679

RESUMEN

Pulsating hydraulic fracturing has been an environmentally friendly method to improve the permeability of rock formations to stimulate gas production and reduce hazard risks. It has the advantage of fracturing the reservoir with lower cracking pressure and less water volume, as the mechanical strength of rock materials has been reduced by the hydraulic pulse pressure. Many researchers have found significant changes in hard rocks after cyclic loading. However, the existing work still cannot clearly explain the mechanism of the rock damage by pulsating hydraulic fracturing within a short-time experiment. To solve the issue, an investigation of the effects of pulsating hydraulic fracturing on CBM production has been carried out in lab and field applications. Results indicate that the long-term hydraulic pulse pressure can cause a linear decline in cracking pressure directly measured in the lab. It plays an essential role in the permeability enhancement by generating more flow channels for CBM production. The low-field NMR quantitatively evaluates the increase in porosity, which reveals significant incremental ratios of over 20% in the porosity of macropores, mesopores, and micropores of coal caused by fatigue damage. It is first proven that hydraulic pulse pressure has a significant influence on the porosity components of macropores, mesopores, and micropores. To validate the effectiveness of the technique on the field scale, a field application of pulsating hydraulic fracturing has been carried out in a coal mine. It shows that gas production has been largely enhanced with a long and stable production stage and higher gas flux after the applied pulsating load. The gas concentration and gas flux of the fractured boreholes are about 2 times that of the nonfractured boreholes. This work provides an investigation of the effects of pulsating hydraulic fracturing on CBM production, which gives a better understanding of the mechanism for the engineers in the field.

12.
Int J Oncol ; 64(6)2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38757345

RESUMEN

Hepatocellular carcinoma (HCC), one of the leading causes of cancer­related mortality worldwide, is challenging to identify in its early stages and prone to metastasis, and the prognosis of patients with this disease is poor. Treatment options for HCC are limited, with even radical treatments being associated with a risk of recurrence or transformation in the short term. Furthermore, the multi­tyrosine kinase inhibitors approved for first­line therapy have marked drawbacks, including drug resistance and side effects. The rise and breakthrough of immune checkpoint inhibitors (ICIs) have provided a novel direction for HCC immunotherapy but these have the drawback of low response rates. Since avoiding apoptosis is a universal feature of cancer, the induction of non­apoptotic regulatory cell death (NARCD) is a novel strategy for HCC immunotherapy. At present, NARCD pathways, including ferroptosis, pyroptosis and necroptosis, are novel potential forms of immunogenic cell death, which have synergistic effects with antitumor immunity, transforming immune 'cold' tumors into immune 'hot' tumors and exerting antitumor effects. Therefore, these pathways may be targeted as a novel treatment strategy for HCC. In the present review, the roles of ferroptosis, pyroptosis and necroptosis in antitumor immunity in HCC are discussed, and the relevant targets and signaling pathways, and the current status of combined therapy with ICIs are summarized. The prospects of targeting ferroptosis, pyroptosis and necroptosis in HCC immunotherapy are also considered.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Inmunoterapia , Neoplasias Hepáticas , Necroptosis , Piroptosis , Humanos , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patología , Piroptosis/efectos de los fármacos , Piroptosis/inmunología , Ferroptosis/efectos de los fármacos , Necroptosis/inmunología , Necroptosis/efectos de los fármacos , Inmunoterapia/métodos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Transducción de Señal/efectos de los fármacos , Animales
13.
J Colloid Interface Sci ; 670: 576-584, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38776692

RESUMEN

The misfolding and aggregation of α-synuclein monomers usually cause the occurrence and development of Parkinson's disease (PD). It is important to develop effective methods for detection of α-synuclein aggregates. Carbon dots (CDs) could be the potential fluorescence probe for this purpose owing to their appreciated optical properties. However, undefined structure of CDs and complicated three-dimensional structure of protein severely hindered the design of fluorescence probe towards protein aggregates. Herein, a red emissive fluorescent amphiphilic CD, named as CL-9, was designed with a high sensitivity to α-synuclein fibrils by a one-step heating process, using the ternary carbon source, including Congo red, l-tryptophan and urea. The CL-9 exhibited turn-on red emissive fluorescence towards α-synuclein fibril, but remained no change towards its monomer. Compared with the original Congo red dye, CL-9 exhibited stronger turn-on red fluorescence towards α-synuclein fibrils with better anti-photobleaching resistance, biocompatibility and signal-to-noise ratio. The CL-9 was successful as a fluorescent probe to image α-synuclein fibrils in NL-5901 C. elegans. The present study provided a feasible approach using the multiple carbon sources to construct the CDs based fluorescence probe targeting amyloid proteins.


Asunto(s)
Carbono , Colorantes Fluorescentes , alfa-Sinucleína , alfa-Sinucleína/química , alfa-Sinucleína/análisis , Carbono/química , Colorantes Fluorescentes/química , Animales , Puntos Cuánticos/química , Humanos , Caenorhabditis elegans/metabolismo , Rojo Congo/química , Amiloide/química , Tamaño de la Partícula , Imagen Óptica
14.
ACS Omega ; 9(15): 17076-17088, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38645320

RESUMEN

Strong-weak coupling outburst prevention technology can reduce the hazard of coal and gas outburst in mines based on hydraulic punching and grouting reinforcement. In this study, the mechanism of outburst hazards in the strong-weak coupling structure under mining disturbance was explored, and then cyclic loading and unloading experiments were performed on samples with different strong-weak height ratios (HRs) using the noncontact full-field strain testing (DIC) system and the acoustic emission (AE) system. The results show that the failure strength of the sample gradually increases with the increase in HR. The residual strain of the strong and weak structures undergoes three stages, i.e., the decelerated deformation, the constant-velocity deformation, and the accelerated deformation. Deformation mainly occurs in the weak structure and starts at the strong-weak interface. The AE signals present strong regional distribution characteristics and the Felicity effect, and the damage is concentrated near 70% of each stage in the cyclic loading process. As the HR rises, the weak structure transitions from brittle damage to ductile damage and from shear damage to tensile damage. In addition, due to the difference in Poisson effects of strong and weak structures, the strong structure transitions from a unidirectional stress state to a triaxial tensile-compressive stress state. When the HR increases to 85:15, the strong structure undergoes tensile damage.

15.
Molecules ; 29(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38675517

RESUMEN

It is imperative to develop an efficient catalyst to reduce the energy barrier of electrochemical water decomposition. In this study, a well-designed electrocatalyst featuring a core-shell structure was synthesized with cobalt sulfides as the core and molybdenum disulfide nanosheets as the shell. The core-shell structure can prevent the agglomeration of MoS2, expose more active sites, and facilitate electrolyte ion diffusion. A CoS2/MoS2 heterostructure is formed between CoS2 and MoS2 through the chemical interaction, and the surface chemistry is adjusted. Due to the morphological merits and the formation of the CoS2/MoS2 heterostructure, CoS2@MoS2 exhibits excellent electrocatalytic performance during the oxygen evolution reaction (OER) process in an alkaline electrolyte. To reach the current density of 10 mA cm-2, only 254 mV of overpotential is required for CoS2@MoS2, which is smaller than that of pristine CoS2 and MoS2. Meanwhile, the small Tafel slope (86.9 mV dec-1) and low charge transfer resistance (47 Ω) imply the fast dynamic mechanism of CoS2@MoS2. As further confirmed by cyclic voltammetry curves for 1000 cycles and the CA test for 10 h, CoS2@MoS2 shows exceptional catalytic stability. This work gives a guideline for constructing the core-shell heterostructure as an efficient catalyst for oxygen evolution reaction.

16.
Molecules ; 29(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38675625

RESUMEN

The rational design of a heterostructure electrocatalyst is an attractive strategy to produce hydrogen energy by electrochemical water splitting. Herein, we have constructed hierarchically structured architectures by immobilizing nickel-cobalt oxide nanowires on/beneath the surface of reduced graphene aerogels (NiCoO2/rGAs) through solvent-thermal and activation treatments. The morphological structure of NiCoO2/rGAs was characterized by microscopic analysis, and the porous structure not only accelerates the electrolyte ion diffusion but also prevents the agglomeration of NiCoO2 nanowires, which is favorable to expose the large surface area and active sites. As further confirmed by the spectroscopic analysis, the tuned surface chemical state can boost the catalytic active sites to show the improved oxygen evolution reaction performance in alkaline electrolytes. Due to the synergistic effect of morphology and composition effect, NiCoO2/rGAs show the overpotential of 258 mV at the current density of 10 mA cm-2. Meanwhile, the small values of the Tafel slope and charge transfer resistance imply that NiCoO2/rGAs own fast kinetic behavior during the OER test. The overlap of CV curves at the initial and 1001st cycles and almost no change in current density after the chronoamperometric (CA) test for 10 h confirm that NiCoO2/rGAs own exceptional catalytic stability in a 1 M KOH electrolyte. This work provides a promising way to fabricate the hierarchically structured nanomaterials as efficient electrocatalysts for hydrogen production.

17.
Poult Sci ; 103(6): 103760, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38678750

RESUMEN

This study was aimed to evaluate the effect of vitamin E (VE) on laying performance, VE deposition, antioxidant capacity, immunity, follicle development, estrogen secretion, ovary metabolome, and cecal microbiota of laying hens. One hundred and twenty XinYang Black-Feathered laying hens (70 wk old) were randomly assigned to 2 groups (6 replicates of 20 birds), and fed a basal diet (containing 20 mg/kg VE, control (CON) group) and a basal diet supplemented with 20 mg/kg VE (VE group). The experiment lasted for 10 wk. Results showed that VE supplementation increased laying performance, antioxidant capacity, and immunity, as evidenced by increased (P < 0.05) performance (laying rate), antioxidant (glutathione peroxidase, total superoxide dismutase, total antioxidant capacity, and catalase) and immune (immunoglobulins) parameters, and decreased (P < 0.05) feed/egg ratio and malondialdehyde. Meanwhile, VE group had higher (P < 0.05) pregrade follicles, ovary index and serum estrogen levels than CON group. 16S rRNA sequencing showed that VE supplementation altered the cecal microbiota composition by increasing Bacteroides, Rikenellaceae_RC9_gut_group, Prevotellaceae_UCG-001 and Megamonas abundances and reducing Christensenellaceae_R-7_group abundance (at genus level), which are mainly associated with the production of short-chain fatty acids. Metabolomic profiling of the ovary revealed that the major metabolites altered by VE supplementation were mainly related to follicle development, estrogen secretion, anti-inflammatory, antioxidant, phototransduction, bile acid synthesis, and nutrient transport. Furthermore, changes in cecal microbiota (at genus level) and ovary metabolites were highly correlated with laying performance, antioxidant, and immune parameters. In summary, VE contributed to the laying performance of aged laying hens by enhancing antioxidant, immune, and ovarian functions, promoting follicle development and estrogen secretion, and regulating gut microbiota and ovary metabolites. These findings will provide a new perspective on the mechanisms of egg production in aged poultry ovaries.


Asunto(s)
Alimentación Animal , Ciego , Pollos , Dieta , Suplementos Dietéticos , Microbioma Gastrointestinal , Metaboloma , Ovario , Vitamina E , Animales , Pollos/fisiología , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Suplementos Dietéticos/análisis , Ciego/microbiología , Ciego/efectos de los fármacos , Dieta/veterinaria , Alimentación Animal/análisis , Vitamina E/administración & dosificación , Vitamina E/farmacología , Metaboloma/efectos de los fármacos , Ovario/efectos de los fármacos , Ovario/metabolismo , Distribución Aleatoria , Antioxidantes/metabolismo
18.
Int Urol Nephrol ; 56(8): 2451-2458, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38528290

RESUMEN

Men are inevitably plagued by prostate disease throughout their lives. However, the understanding of the pathogenesis of prostate diseases is still limited. In the 1960s, McNeal proposed the theory of prostate zones: the prostate was divided into three main zones: transition zone, central zone, and peripheral zone. Over the past 50 years, significant differences between different prostate zones have been gradually revealed. We summarized the most significant differences in different zones of the prostate. For the first time, we proposed the "apparent difference in prostate zones" concept. This new concept has been proposed to understand the different zones of the prostate better. It also provided new ideas for exploring the susceptibility of lesions in different prostate zones. Despite the reported differences between zones, the treatment of prostate-related diseases remains partition agnostic. Therefore, we also discussed the clinical significance of the "apparent difference in the prostate zone" and emphasized the necessity of prostate zones.


Asunto(s)
Próstata , Hiperplasia Prostática , Neoplasias de la Próstata , Prostatitis , Humanos , Masculino , Neoplasias de la Próstata/patología , Próstata/patología , Susceptibilidad a Enfermedades
19.
Curr Med Sci ; 44(2): 380-390, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38517675

RESUMEN

OBJECTIVE: A novel technique was explored using an airbag-selective portal vein blood arrester that circumvents the need for an intraoperative assessment of anatomical variations in patients with complex intrahepatic space-occupying lesions. METHODS: Rabbits undergoing hepatectomy were randomly assigned to 4 groups: intermittent portal triad clamping (PTC), intermittent portal vein clamping (PVC), intermittent portal vein blocker with an airbag-selective portal vein blood arrester (APC), and without portal blood occlusion (control). Hepatic ischemia and reperfusion injury were assessed by measuring the 7-day survival rate, blood loss, liver function, hepatic pathology, hepatic inflammatory cytokine infiltration, hepatic malondialdehyde levels, and proliferating cell nuclear antigen levels. RESULTS: Liver damage was substantially reduced in the APC and PVC groups. The APC animals exhibited transaminase levels similar to or less oxidative stress damage and inflammatory hepatocellular injury compared to those exhibited by the PVC animals. Bleeding was significantly higher in the control group than in the other groups. The APC group had less bleeding than the PVC group because of the avoidance of portal vein skeletonization during hepatectomy. Thus, more operative time was saved in the APC group than in the PVC group. Moreover, the total 7-day survival rate in the APC group was higher than that in the PTC group. CONCLUSION: Airbag-selective portal vein blood arresters may help protect against hepatic ischemia and reperfusion injury in rabbits undergoing partial hepatectomy. This technique may also help prevent liver damage in patients requiring hepatectomy.


Asunto(s)
Airbags , Daño por Reperfusión , Humanos , Animales , Conejos , Hepatectomía/efectos adversos , Hepatectomía/métodos , Vena Porta/cirugía , Constricción , Hígado/patología , Isquemia/patología , Daño por Reperfusión/prevención & control
20.
Adv Sci (Weinh) ; 11(22): e2310013, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38552154

RESUMEN

The development of a cost-competitive and efficient electrocatalyst is both attractive and challenging for hydrogen production by hydrogen evolution reaction (HER). Herein, a facile glycol reduction method to construct Ru nanoclusters coupled with hierarchical exfoliated-MXene/reduced graphene oxide architectures (Ru-E-MXene/rGA) is reported. The hierarchical structure, formed by the self-assembly of graphene oxides, can effectively prohibit the self-stacking of MXene nanosheets. Meanwhile, the formation of the MXene/rGA interface can strongly trap the Ru3+ ions, resulting in the uniform distribution of Ru nanoclusters within Ru-E-MXene/rGA. The boosted catalytic activity and underlying catalytic mechanism during the HER process are proved by density functional theory. Ru-E-MXene/rGA exhibits overpotentials of 42 and 62 mV at 10 mA cm-2 in alkaline and acidic electrolytes, respectively. The small Tafel slope and charge transfer resistance (Rct) values elucidate its fast dynamic behavior. The cyclic voltammetry (CV) curves and chronoamperometry test confirm the high stability of Ru-E-MXene/rGA. These results demonstrate that coupling Ru nanoclusters with the MXene/rGA heterostructure represents an efficient strategy for constructing MXene-based catalysts with enhanced HER activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...