Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 15(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38675272

RESUMEN

In this paper, a novel asymmetric trench SiC MOSFET with a Poly-Si/SiC heterojunction diode (HJD-ATMOS) is designed to improve its reverse conduction characteristics and switching performance. This structure features an integrated heterojunction diode, which improves body diode characteristics without affecting device static characteristics. The heterojunction diode acts as a freewheeling diode during reverse conduction, reducing the cut-in voltage (Vcut-in) to a lower level than conventional asymmetric trench SiC MOSFET (C-ATMOS), while maintaining a similar breakdown voltage. Meanwhile, the split gate structure reduces gate-to-drain charge (Qgd). Through TCAD simulation, the HJD-ATMOS decreases Vcut-in by 53.04% compared to the C-ATMOS. Both Qgd and switching loss are reduced, with a decrease of 31.91% in Qgd and 40.29% in switching loss.

2.
Plants (Basel) ; 12(13)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37447133

RESUMEN

MicroRNAs (miRNAs) have been shown to be critical components in plant immunity. MicroRNA398 (miR398) is a highly conserved miRNA in all land plants and plays crucial roles in diverse biotic stress responses. However, the role of miR398 has not yet been characterized in tomato resistance against Botrytis cinerea. In this report, the transcript levels of sly-miR398b were strongly decreased in B. cinerea-infected leaves and the overexpression of sly-miR398b resulted in enhanced susceptibility. The attenuated expression of cytosol Cu/Zn-SOD (CSD1), chloroplast Cu/Zn-SOD (CSD2), and guaiacol peroxidase (GPOD), as well as the decreased activities of superoxide dismutase (SOD) and GPOD, collectively led to increased hydrogen peroxide (H2O2) accumulation in sly-miR398b overexpressing plants. Furthermore, sly-miR398b was induced by methyl jasmonate (MeJA) treatment. The overexpression of sly-miR398b suppressed the expression of TomLoxD, LapA, and PR-STH2 in response to B. cinerea and MeJA treatment. Our data demonstrate that sly-miR398b overexpression negatively regulates the resistance to B. cinerea in tomato by inducing the accumulation of reactive oxygen species (ROS) and downregulating the expression of MeJA-responsive defense genes.

3.
Micromachines (Basel) ; 14(5)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37241697

RESUMEN

The single-event effect reliability issue is one of the most critical concerns in the context of space applications for SiC VDMOS. In this paper, the SEE characteristics and mechanisms of the proposed deep trench gate superjunction (DTSJ), conventional trench gate superjunction (CTSJ), conventional trench gate (CT), and conventional planar gate (CT) SiC VDMOS are comprehensively analyzed and simulated. Extensive simulations demonstrate the maximum SET current peaks of DTSJ-, CTSJ-, CT-, and CP SiC VDMOS, which are 188 mA, 218 mA, 242 mA, and 255 mA, with a bias voltage VDS of 300 V and LET = 120 MeV·cm2/mg, respectively. The total charges of DTSJ-, CTSJ-, CT-, and CP SiC VDMOS collected at the drain are 320 pC, 1100 pC, 885 pC, and 567 pC, respectively. A definition and calculation of the charge enhancement factor (CEF) are proposed. The CEF values of DTSJ-, CTSJ-, CT-, and CP SiC VDMOS are 43, 160, 117, and 55, respectively. Compared with CTSJ-, CT-, and CP SiC VDMOS, the total charge and CEF of the DTSJ SiC VDMOS are reduced by 70.9%, 62.4%, 43.6% and 73.1%, 63.2%, and 21.8%, respectively. The maximum SET lattice temperature of the DTSJ SiC VDMOS is less than 2823 K under the wide operating conditions of a drain bias voltage VDS ranging from 100 V to 1100 V and a LET value ranging from 1 MeV·cm2/mg to 120 MeV·cm2/mg, while the maximum SET lattice temperatures of the other three SiC VDMOS significantly exceed 3100 K. The SEGR LET thresholds of DTSJ-, CTSJ-, CT-, and CP SiC VDMOS are approximately 100 MeV·cm2/mg, 15 MeV·cm2/mg, 15 MeV·cm2/mg, and 60 MeV·cm2/mg, respectively, while the value of VDS = 1100 V.

4.
Micromachines (Basel) ; 14(3)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36985094

RESUMEN

Single-event gate-rupture (SEGR) in the trench vertical double-diffused power MOSFET (VDMOS) occurs at a critical bias voltage during heavy-ion experiments. Fault analysis demonstrates that the hot spot is located at the termination of the VDMOS, and the gate oxide in the termination region has been damaged. The SEGR-hardened termination with multiple implantation regions is proposed and simulated using the Sentaurus TCAD. The multiple implantation regions are introduced, leading to an increase in the distance between the gate oxide and the hole accumulation region, as well as a decrease in the resistivity of the hole conductive path. This approach is effective in reducing the electric field of the gate oxide to below the calculated critical field, and results in a lower electric field than the conventional termination.

5.
J Colloid Interface Sci ; 628(Pt B): 204-213, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-35988515

RESUMEN

Aqueous zinc-ions batteries with low cost, reliable safety, high theoretical specific capacity and eco-friendliness have captured conspicuous attention in large-scale energy storage. However, the developed cathodes often suffer from low electrical conductivity and sluggish Zn2+ diffusion kinetics, which severely hampers the development of aqueous zinc-ions batteries. Herein, we successfully prepare Mg/PANI/V2O5•nH2O (MPVO) nanosheets through conducting polymers (polyaniline) and metal ions (Mg2+) co-intercalated strategy and systematically explore its electrochemical performance as cathode materials for aqueous zinc-ion batteries. Benefitting from the synergistic effect of polyaniline and Mg2+ co-intercalated, the MPVO exhibits larger interlayer spacing and higher electrical conductivity than the single guest intercalation, which significantly enhances the electrochemical kinetics. As a consequence, the MPVO cathodes deliver superior specific capacity, rate capability and long-term cycling performance. Moreover, multiple characterizations and theoretical calculations are executed to expound the relevant mechanism.Therefore, this work provides a novel thought for the design of high-performance cathode materials for aqueous ZIBs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...