Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 289
Filtrar
1.
Biol Psychiatry ; 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39103010

RESUMEN

BACKGROUND: Numerous studies have established the presence of gray matter atrophy and brain activation abnormalities during neurocognitive and social cognitive tasks in schizophrenia. Despite a growing consensus that diseases localize better to distributed brain networks than individual anatomical regions, there is still a dearth of literature examining brain network localization of gray matter atrophy, neurocognitive and social cognitive dysfunction in schizophrenia. METHODS: To address this gap, we initially identified brain locations of structural and functional abnormalities in schizophrenia from 301 published neuroimaging studies with 8712 schizophrenia individuals and 9275 healthy controls. By applying novel functional connectivity network mapping to large-scale resting-state functional magnetic resonance imaging datasets, we mapped these affected brain locations to 3 brain abnormality networks of schizophrenia. RESULTS: The gray matter atrophy network of schizophrenia comprised a broadly distributed set of brain areas predominantly implicating the ventral attention, somatomotor, and default networks. The neurocognitive dysfunction network was also composed of widespread brain areas primarily involving the frontoparietal and default networks. By contrast, the social cognitive dysfunction network consisted of circumscribed brain regions mainly implicating the default, subcortical, and visual networks. CONCLUSIONS: Our findings suggest shared and unique brain network substrates of gray matter atrophy, neurocognitive and social cognitive dysfunction in schizophrenia, which may not only refine the understanding of disease neuropathology from a network perspective, but also potentially contribute to more targeted and effective treatments for impairments in different cognitive domains in schizophrenia.

2.
Chemosphere ; 362: 142752, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38960048

RESUMEN

Ferrate (Fe(VI)) is a promising oxidant for water remediation, yet it has limited reactivity towards certain recalcitrant but important emerging contaminants, such as sulfamethoxazole. Here, this study demonstrates that nitroxide redox mediators, specifically 9-azabicyclo[3.3.1]nonasne N-oxyl (ABNO), can catalyze Fe(VI) reaction with sulfamethoxazole by functioning both as Fe(VI) activator and electron shuttle. The underlying mechanism is explained as: (i) Fe(VI) activation: a series of one-electron transfers between Fe(VI) and ABNO produces highly reactive Fe(V)/Fe(IV) and ABNO+; (ii) electron shuttle: the newly formed active ABNO+ reacts with the sulfamethoxazole, contributing to its removal. Concurrently, ABNOH is generated and subsequently converted back to ABNO by reactive species, thereby completing the redox cycle. The as-developed heterogeneous redox mediator, ABNO@SiO2, retained its catalytic properties and effectively catalyzed Fe(VI) to remove sulfamethoxazole at environmentally relevant pH levels.


Asunto(s)
Hierro , Oxidación-Reducción , Sulfametoxazol , Contaminantes Químicos del Agua , Sulfametoxazol/química , Hierro/química , Catálisis , Contaminantes Químicos del Agua/química , Electrones , Dióxido de Silicio/química
3.
Insights Imaging ; 15(1): 176, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38992330

RESUMEN

OBJECTIVES: To use T1ρ mapping to assess myocardial fibrosis and to provide a reference for future clinical application, it is necessary to understand the factors influencing T1ρ values. This study explored the influence of different spin-locking frequencies on T1ρ values under a 3.0-T MR system. METHODS: Fifty-seven healthy subjects were prospectively and consecutively included in this study, and T1ρ mapping was performed on them in 3 short-axis slices with three spin-lock frequencies at the amplitude of 300 Hz, 400 Hz, and 500 Hz, then nine T1ρ images were acquired per subject. Four T1ρ-weighted images were acquired using a spin-lock preparation pulse with varying durations (0 msec, 13.3 msec, 26.6 msec, 40 msec). T1ρ relaxation times were quantified for each slice and each myocardial segment. The results were analyzed using Student's t-test and one-way analysis of variance (ANOVA) methods. RESULTS: Mean T1ρ relaxation times were 43.5 ± 2.8 msec at 300 Hz, 44.9 ± 3.6 msec at 400 Hz, and 46.2 ± 3.1 msec at 500 Hz, showing a significant progressive increase from low to high spin-lock frequency (300 Hz vs. 400 Hz, p = 0.046; 300 Hz vs. 500 Hz, p < 0.001; 400 Hz vs. 500 Hz, p = 0.043). In addition, The T1ρ values of females were significantly higher than those of males (300 Hz, p = 0.049; 400 Hz, p = 0.01; 500 Hz, p = 0.002). CONCLUSION: In this prospective study, myocardial T1ρ values for the specific CMR setting are provided, and we found that gender and spin-lock frequency can affect the T1ρ values. CRITICAL RELEVANCE STATEMENT: T1ρ mapping could supersede late gadolinium enhancement for detection of myocardial fibrosis. Establishing reference mean values that take key technical elements into account will facilitate interpretation of data in disease states. KEY POINTS: This study established myocardial T1ρ reference values for different spin-lock frequencies. T1ρ values increased with spin-lock frequency, but numerical differences were minimal. Females had higher T1ρ values than males at all frequencies.

4.
J Genet Genomics ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38969259

RESUMEN

The phytohormone auxin exerts control over remarkable developmental processes in plants. It moves from cell to cell, resulting in the creation of both extracellular auxin and intracellular auxin, which are recognized by distinct auxin receptors. These two auxin signaling systems govern different auxin responses while working together to regulate plant development. In this review, we outline the latest research advancements in unraveling these auxin signaling pathways, encompassing auxin perception and signaling transductions. We emphasize the interaction between extracellular auxin and intracellular auxin, which contributes to the intricate role of auxin in plant development.

5.
Med Phys ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39016559

RESUMEN

BACKGROUND: X-ray radiography is a widely used imaging technique worldwide, and its image quality directly affects diagnostic accuracy. Therefore, X-ray image quality control (QC) is essential. However, subjectively assessing image quality is inefficient and inconsistent, especially when large amounts of image data are being evaluated. Thus, subjective assessment cannot meet current QC needs. PURPOSE: To meet current QC needs and improve the efficiency of image quality assessment, a complete set of quality assessment criteria must be established and implemented using artificial intelligence (AI) technology. Therefore, we proposed a multi-criteria AI system for automatically assessing the image quality of knee radiographs. METHODS: A knee radiograph QC knowledge graph containing 16 "acquisition technique" labels representing 16 image quality defects and five "clarity" labels representing five grades of clarity were developed. Ten radiographic technologists conducted three rounds of QC based on this graph. The single-person QC results were denoted as QC1 and QC2, and the multi-person QC results were denoted as QC3. Each technologist labeled each image only once. The ResNet model structure was then used to simultaneously perform classification (detection of image quality defects) and regression (output of a clarity score) tasks to construct an image QC system. The QC3 results, comprising 4324 anteroposterior and lateral knee radiographs, were used for model training (70% of the images), validation (10%), and testing (20%). The 865 test set data were used to evaluate the effectiveness of the AI model, and an AI QC result, QC4, was automatically generated by the model after training. Finally, using a double-blind method, the senior QC expert reviewed the final QC results of the test set with reference to the results QC3 and QC4 and used them as a reference standard to evaluate the performance of the model. The precision and mean absolute error (MAE) were used to evaluate the quality of all the labels in relation to the reference standard. RESULTS: For the 16 "acquisition technique" features, QC4 exhibited the highest weighted average precision (98.42% ± 0.81%), followed by QC3 (91.39% ± 1.35%), QC2 (87.84% ± 1.68%), and QC1 (87.35% ± 1.71%). For the image clarity features, the MAEs between QC1, QC2, QC3, and QC4 and the reference standard were 0.508 ± 0.021, 0.475 ± 0.019, 0.237 ± 0.016, and 0.303 ± 0.018, respectively. CONCLUSIONS: The experimental results show that our automated quality assessment system performed well in classifying the acquisition technique used for knee radiographs. The image clarity quality evaluation accuracy of the model must be further improved but is generally close to that of radiographic technologists. Intelligent QC methods using knowledge graphs and convolutional neural networks have the potential for clinical applications.

6.
J Magn Reson Imaging ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38979719

RESUMEN

BACKGROUND: Epicardial adipose tissue (EAT) is a metabolically active visceral fat linked to cardiovascular disease. Prior studies demonstrated the predictive value of EAT volume (EATV) in atrial fibrillation (AF) among hypertrophic obstructive cardiomyopathy patients. PURPOSE: To investigate the association between EATV and AF in hypertrophic cardiomyopathy (HCM). STUDY TYPE: Retrospective. POPULATION: Two hundred and twenty-four HCM patients (including 79 patients with AF and 145 patients without AF, 154 men) and 80 healthy controls (54 men). FIELD STRENGTH/SEQUENCE: 3.0 T scanner; balanced steady-state free precession (SSFP) cine sequence, gradient echo. ASSESSMENT: EAT thickness was assessed in the 4-chamber and basal short-axis planes. EAT volume was calculated by outlining the epicardial border and visceral pericardium layer on short-axis cine images. STATISTICAL TESTS: Shapiro-Wilk test, Student's t test or the Mann-Whitney U test, chi-square test or Fisher's exact test, Multivariate linear regression analyses, Multivariable binary logistic regression analysis. Intraclass correlation coefficient. Significance was determined at P < 0.05. RESULTS: EATV and EAT volume index (EATVI) were significantly greater in HCM patients with AF than those without AF (126.6 ± 25.9 mL vs. 90.5 ± 24.5 mL, and 73.0 ± 15.9 mL/m2 vs. 51.3 ± 13.4 mL/m2). EATVI was associated with AF in multivariable linear regression analysis among HCM patients (ß = 0.62). Multivariable logistic regression analysis revealed that compared to other indicators, the area under curve (AUC) of EATVI was 0.86 (cut-off, 53.9 mL/m2, 95% CI, 0.80-0.89), provided a better performance, with the sensitivity of 96.2% and specificity of 58.6%. The combined model exhibited superior association with AF presence compared to the clinical model (AUC 0.96 vs. 0.76) and the imaging model (AUC 0.96 vs. 0.93). DATA CONCLUSION: EATVI was associated with AF. EATVI was significantly correlated with incident AF, and provided a better performance in HCM patients compared to other indicators. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 2.

7.
BMC Med Imaging ; 24(1): 190, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075336

RESUMEN

BACKGROUND: This study explores the diagnostic value of combining fractional-order calculus (FROC) diffusion-weighted model with simultaneous multi-slice (SMS) acceleration technology in distinguishing benign and malignant breast lesions. METHODS: 178 lesions (73 benign, 105 malignant) underwent magnetic resonance imaging with diffusion-weighted imaging using multiple b-values (14 b-values, highest 3000 s/mm2). Independent samples t-test or Mann-Whitney U test compared image quality scores, FROC model parameters (D,, ), and ADC values between two groups. Multivariate logistic regression analysis identified independent variables and constructed nomograms. Model discrimination ability was assessed with receiver operating characteristic (ROC) curve and calibration chart. Spearman correlation analysis and Bland-Altman plot evaluated parameter correlation and consistency. RESULTS: Malignant lesions exhibited lower D, and ADC values than benign lesions (P < 0.05), with higher values (P < 0.05). In SSEPI-DWI and SMS-SSEPI-DWI sequences, the AUC and diagnostic accuracy of D value are maximal, with D value demonstrating the highest diagnostic sensitivity, while value exhibits the highest specificity. The D and combined model had the highest AUC and accuracy. D and ADC values showed high correlation between sequences, and moderate. Bland-Altman plot demonstrated unbiased parameter values. CONCLUSION: SMS-SSEPI-DWI FROC model provides good image quality and lesion characteristic values within an acceptable time. It shows consistent diagnostic performance compared to SSEPI-DWI, particularly in D and values, and significantly reduces scanning time.


Asunto(s)
Neoplasias de la Mama , Imagen de Difusión por Resonancia Magnética , Humanos , Femenino , Imagen de Difusión por Resonancia Magnética/métodos , Neoplasias de la Mama/diagnóstico por imagen , Persona de Mediana Edad , Adulto , Anciano , Curva ROC , Sensibilidad y Especificidad , Diagnóstico Diferencial , Estudios Retrospectivos , Interpretación de Imagen Asistida por Computador/métodos , Adulto Joven
9.
Sci Total Environ ; 945: 173903, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38880154

RESUMEN

Quantifying changes in soil organic carbon (SOC) stocks within croplands across a broad spatiotemporal scale in response to anthropogenic and environmental factors offers valuable insights for sustainable agriculture aimed to improve soil health. Using a validated and widely used soil carbon model RothC, we simulated the SOC dynamics across intensive croplands in China that support ∼22 % of the global population using only 7 % of the global cropland area. The modelling results demonstrate that the optimized RothC effectively captures SOC dynamics measured across 29 long-term field trials during 40 years. Between 1980 and 2020, the average SOC at the top 30 cm in croplands increased from 40 Mg C ha-1 to 49 Mg C ha-1, resulting in a national carbon sequestration of 1100 Tg C, with an average carbon sequestration rate of 27 Tg C yr-1. The annual increase rate of SOC (relative to the SOC stock of the previous year), starting at <0.2 % yr-1 in the 1980s, reached around 0.4 % yr-1 in the 1990s and further rose to about 0.8 % yr-1 in the 2000s and 2010s. Notably, the eastern and southern regions, comprising about 40 % of the croplands, contributed about two-thirds of the national SOC gain. In northeast China, SOC slightly decreased from 58 Mg C ha-1 in 1980 to 57 Mg C ha-1 in 2020, resulting in a total decline of 28 Tg C. Increased organic C inputs, particularly from the straw return, was the crucial factor in SOC increase. Future strategies should focus on region-specific optimization of straw management. Specifically, in northeast China, increasing the proportion of straw returned to fields can prevent further SOC decline. In regions with SOC increase, such as the eastern and southern regions, diversified straw utilization (e.g., bioenergy production), could further mitigate greenhouse gas emissions.

10.
J Imaging Inform Med ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940890

RESUMEN

Cardiac amyloidosis (CA) is characterized by the deposition of amyloid fibrils within the myocardium, resulting in a restrictive physiology. Although microvascular dysfunction is a common feature, it is difficult to assess. This study aimed to explore myocardial transit time (MyoTT) by cardiovascular magnetic resonance (CMR) as a potential novel parameter of microcirculatory dysfunction in CA. This prospective study enrolled 20 CA patients and 20 control subjects. CMR acquisition included cine imaging, pre- and post-contrast T1 mapping, and MyoTT assessment, which was calculated from the time delay in contrast agent arrival between the aortic root and coronary sinus (CS). Compared to the control group, patients with CA exhibited significantly reduced left ventricular (LV) ejection fraction and myocardial strain, an increase in LV global peak wall thickness (LVGPWT), extracellular volume fraction (ECV), and prolonged MyoTT (14.4 ± 3.8 s vs. 7.7 ± 1.5 s, p < 0.001). Moreover, patients at Mayo stage III had a significantly longer MyoTT compared to those at stage I/II. MyoTT showed a positive correlation with the ECV, LVGPWT, and LV global longitudinal strain (LV-GLS) (p < 0.05). The area under the curve (AUC) for MyoTT was 0.962, demonstrating diagnostic performance comparable to that of the ECV (AUC 0.995) and LV-GLS (AUC 0.950) in identifying CA. MyoTT is significantly prolonged in patients with CA, correlating with fibrosis markers, remodeling, and dysfunction. As a novel parameter of coronary microvascular dysfunction (CMD), MyoTT has the potential to be an integral biomarker in multiparametric CMR assessment of CA.

11.
Neurosurg Focus ; 56(6): E10, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38823056

RESUMEN

OBJECTIVE: Hoffmann's sign testing is a commonly used physical examination in clinical practice for patients with cervical spondylotic myelopathy (CSM). However, the pathophysiological mechanisms underlying its occurrence and development have not been thoroughly investigated. Therefore, the present study aimed to explore whether a positive Hoffmann's sign (PHS) in CSM patients is associated with spinal cord and brain remodeling and to identify potential neuroimaging biomarkers with diagnostic value. METHODS: Seventy-six patients with CSM and 40 sex- and age-matched healthy controls (HCs) underwent multimodal MRI. Based on the results of the Hoffmann's sign examination, patients were divided into two groups: those with a PHS (n = 38) and those with a negative Hoffmann's sign (NHS; n = 38). Quantification of spinal cord and brain structural and functional parameters of the participants was performed using various methods, including functional connectivity analysis, voxel-based morphometry, and atlas-based analysis based on functional MRI and structural MRI data. Furthermore, this study conducted a correlation analysis between neuroimaging metrics and neurological function and utilized a support vector machine (SVM) algorithm for the classification of PHS and NHS. RESULTS: In comparison with the NHS and HC groups, PHS patients exhibited significant reductions in the cross-sectional area and fractional anisotropy (FA) of the lateral corticospinal tract (CST), reticulospinal tract (RST), and fasciculus cuneatus, concomitant with bilateral reductions in the volume of the lateral pallidum. The functional connectivity analysis indicated a reduction in functional connectivity between the left lateral pallidum and the right angular gyrus in the PHS group. The correlation analysis indicated a significant positive association between the CST and RST FA and the volume of the left lateral pallidum in PHS patients. Furthermore, all three variables exhibited a positive correlation with the patients' motor function. Finally, using multimodal neuroimaging metrics in conjunction with the SVM algorithm, PHS and NHS were classified with an accuracy rate of 85.53%. CONCLUSIONS: This research revealed a correlation between structural damage to the pallidum and RST and the presence of Hoffmann's sign as well as the motor function in patients with CSM. Features based on neuroimaging indicators have the potential to serve as biomarkers for assessing the extent of neuronal damage in CSM patients.


Asunto(s)
Imagen por Resonancia Magnética , Neuroimagen , Enfermedades de la Médula Espinal , Espondilosis , Humanos , Masculino , Femenino , Persona de Mediana Edad , Espondilosis/diagnóstico por imagen , Neuroimagen/métodos , Enfermedades de la Médula Espinal/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Anciano , Adulto , Vértebras Cervicales/diagnóstico por imagen
12.
J Neurosurg Spine ; : 1-11, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38905708

RESUMEN

OBJECTIVE: Cervical spondylotic myelopathy (CSM) stands as the most prevalent form of spinal cord injury, frequently prompting various changes in both the brain and spinal cord. However, the precise nature of these changes within the brains and spinal cords of CSM patients experiencing hand clumsiness (HCL) symptoms has remained elusive. The authors aimed to scrutinize these alterations and explore potential links between these changes and the onset of HCL symptoms. METHODS: Using the modified Japanese Orthopaedic Association (mJOA) scale, the authors classified CSM patients into two groups: those without HCL and those with HCL. The authors performed voxel-wise z-score transformation amplitude of low-frequency fluctuations (zALFF) and resting-state functional connectivity (FC) evaluations in the brain. Additionally, they used the Spinal Cord Toolbox to calculate the fractional anisotropy (FA) of spinal cord tracts. The analysis also encompassed an examination of the correlation of these measures with improvements in mJOA scores. RESULTS: Significant disparities in zALFF values surfaced in the right calcarine, right cuneus, right precuneus, right middle occipital gyrus (MOG), right superior occipital gyrus (SOG), and right superior parietal gyrus (SPG) between healthy controls (HC), patients without HCL, and patients with HCL, primarily within the visual cortex. In the patient group, patients with HCL displayed reduced FC between the right calcarine, right MOG, right SOG, right SPG, right SFG, bilateral MFG, and left median cingulate and paracingulate gyri when compared with patients without HCL. Moreover, significant differences in FA values of the corticospinal tract (CST) and reticulospinal tract (REST) at the C2 level emerged among HC, patients without HCL, and patients with HCL. Notably, zALFF, FC, and FA values in specific brain regions and spinal cord tracts exhibited correlations with mJOA upper-extremity scores. Additionally, FA values of the CST and REST correlated with zALFF values in the right calcarine, right MOG, right SOG, and right SPG. CONCLUSIONS: Alterations within brain regions associated with the visual cortex, the fronto-parietal-occipital attention network, and spinal cord pathways appear to play a substantial role in the emergence and progression of HCL symptoms. Furthermore, the existence of a potential connection between the spinal cord and the brain suggests that this link might be related to the clinical symptoms of CSM.

13.
Brain Behav ; 14(6): e3550, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38841739

RESUMEN

BACKGROUND: Cerebral specialization and interhemispheric cooperation are two vital features of the human brain. Their dysfunction may be associated with disease progression in patients with Alzheimer's disease (AD), which is featured as progressive cognitive degeneration and asymmetric neuropathology. OBJECTIVE: This study aimed to examine and define two inherent properties of hemispheric function in patients with AD by utilizing resting-state functional magnetic resonance imaging (rs-fMRI). METHODS: Sixty-four clinically diagnosed AD patients and 52 age- and sex-matched cognitively normal subjects were recruited and underwent MRI and clinical evaluation. We calculated and compared brain specialization (autonomy index, AI) and interhemispheric cooperation (connectivity between functionally homotopic voxels, CFH). RESULTS: In comparison to healthy controls, patients with AD exhibited enhanced AI in the left middle occipital gyrus. This increase in specialization can be attributed to reduced functional connectivity in the contralateral region, such as the right temporal lobe. The CFH of the bilateral precuneus and prefrontal areas was significantly decreased in AD patients compared to controls. Imaging-cognitive correlation analysis indicated that the CFH of the right prefrontal cortex was marginally positively related to the Montreal Cognitive Assessment score in patients and the Auditory Verbal Learning Test score. Moreover, taking abnormal AI and CFH values as features, support vector machine-based classification achieved good accuracy, sensitivity, specificity, and area under the curve by leave-one-out cross-validation. CONCLUSION: This study suggests that individuals with AD have abnormal cerebral specialization and interhemispheric cooperation. This provides new insights for further elucidation of the pathological mechanisms of AD.


Asunto(s)
Enfermedad de Alzheimer , Imagen por Resonancia Magnética , Humanos , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/diagnóstico por imagen , Femenino , Masculino , Anciano , Imagen por Resonancia Magnética/métodos , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Persona de Mediana Edad , Máquina de Vectores de Soporte , Anciano de 80 o más Años
14.
World Neurosurg ; 188: e506-e512, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38821403

RESUMEN

OBJECTIVE: To summarize the preliminary application experience of intraoperative ultrasound with burr hole probe in minimally invasive neurosurgery and to explore its application value. METHODS: Thirty-one patients who underwent intraoperative ultrasound guided puncture with burr hole probe in our center from August 2018 to May 2024 were collected, including 16 cases of ventriculoperitoneal shunt operation, 6 cases of assisted stereotactic needle biopsy, 3 cases of intracranial pressure probe implantation in lateral ventricle, 3 cases of brain abscess puncture for external drainage, and 3 cases of intracranial cyst puncture and peritoneal drainage. During the procedures, the burr hole probe was used to locate the intracranial targets and guide the puncture. The postoperative computed tomography (CT) scans or combined postoperative pathological results could verify the accuracy of puncture. In addition, the intervention effect and recovery status of patients were also recorded. RESULTS: The intraoperative ultrasound with burr hole probe could clearly display all the purposed targets and accurately guide the puncture procedures in all cases. All patients achieved satisfactory diagnostic and therapeutic results without new neurological dysfunction and serious complications. CONCLUSIONS: The intraoperative ultrasound with burr hole probe is an effective device for demonstrating intracranial structures. It not only enables minimally invasive and precise diagnosis or treatment of many neurosurgical diseases, but also is simple and safe to operate, which has important promotional value in the neurosurgery.


Asunto(s)
Procedimientos Quirúrgicos Mínimamente Invasivos , Procedimientos Neuroquirúrgicos , Humanos , Femenino , Masculino , Persona de Mediana Edad , Adulto , Procedimientos Neuroquirúrgicos/métodos , Anciano , Procedimientos Quirúrgicos Mínimamente Invasivos/métodos , Adulto Joven , Adolescente , Ultrasonografía Intervencional/métodos , Derivación Ventriculoperitoneal/métodos , Niño
15.
Nat Genet ; 56(6): 1110-1120, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38811844

RESUMEN

Genome-wide association studies of brain imaging phenotypes are mainly performed in European populations, but other populations are severely under-represented. Here, we conducted Chinese-alone and cross-ancestry genome-wide association studies of 3,414 brain imaging phenotypes in 7,058 Chinese Han and 33,224 white British participants. We identified 38 new associations in Chinese-alone analyses and 486 additional new associations in cross-ancestry meta-analyses at P < 1.46 × 10-11 for discovery and P < 0.05 for replication. We pooled significant autosomal associations identified by single- or cross-ancestry analyses into 6,443 independent associations, which showed uneven distribution in the genome and the phenotype subgroups. We further divided them into 44 associations with different effect sizes and 3,557 associations with similar effect sizes between ancestries. Loci of these associations were shared with 15 brain-related non-imaging traits including cognition and neuropsychiatric disorders. Our results provide a valuable catalog of genetic associations for brain imaging phenotypes in more diverse populations.


Asunto(s)
Encéfalo , Pueblos del Este de Asia , Neuroimagen , Población Blanca , Adulto , Femenino , Humanos , Masculino , Pueblo Asiatico/genética , Encéfalo/diagnóstico por imagen , Estudio de Asociación del Genoma Completo , Imagen por Resonancia Magnética , Fenotipo , Polimorfismo de Nucleótido Simple , Población Blanca/genética , Pueblos del Este de Asia/genética , Reino Unido , China
16.
Technol Cancer Res Treat ; 23: 15330338241256859, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38780516

RESUMEN

Introduction: We aimed to modify the LR-5 strategy to improve the diagnostic sensitivity for hepatocellular carcinoma (HCC) in high-risk patients while maintaining specificity. Methods: This study retrospectively analyzed 412 patients with 445 liver observations who underwent preoperative gadolinium ethoxybenzyl DTPA (GD-EOB-DTPA)-enhanced MRI followed by surgical procedures or biopsies. All observations were classified according to LI-RADS v2018, and the classifications were adjusted by modifying major features (MF)(substituting threshold growth with a more HCC-specific ancillary features (AF): presence of blood products within the mass, arterial phase hyperenhancement (APHE) was interpreted with hypointensity on precontrast imaging- isointensity in arterial phase (AP) and extending washout to transitional phase (TP)(2 min)). The specificity, sensitivity, and positive predictive value (PPV) were assessed to compare LR-5 (definitely HCC) diagnostic efficacy between LI-RADS version 2018 and modified LI-RADS. Results: Apart from nonenhancing "capsule", the interreader agreement of MFs and HCC-specific AFs between the two readers reached substantial or excellent ranges (κ values ranging from 0.631 to 0.911). According to LI-5 v2018, the specificity, sensitivity and PPV of HCC were 90.74%, 82.35%, and 98.17%, respectively. Based on a more HCC-specific AF, signal intensity in AP and TP (2 min), the sensitivity of the three modified strategies were 86.19%, 93.09%, 96.67% (P < .05)), while maintaining high specificity and PPV rates at 88.89% and 98.25% (P > .05) Conclusion: Further investigation into the efficacy of threshold growth as a MF is warranted. By utilizing GD-EOB-DTPA-enhanced MRI, enhancing the sensitivity of the modified LR-5 category may be achieved without compromising specificity and PPV in diagnosing HCC among high-risk patients.


Asunto(s)
Carcinoma Hepatocelular , Medios de Contraste , Gadolinio DTPA , Neoplasias Hepáticas , Imagen por Resonancia Magnética , Humanos , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/patología , Imagen por Resonancia Magnética/métodos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Estudios Retrospectivos , Adulto , Aumento de la Imagen/métodos
17.
J Neurosci Res ; 102(3): e25307, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38444265

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive decline. Sex differences in the progression of AD exist, but the neural mechanisms are not well understood. The purpose of the current study was to explore sex differences in brain functional connectivity (FC) at different stages of AD and their predictive ability on Montreal Cognitive Assessment (MoCA) scores using connectome-based predictive modeling (CPM). Resting-state functional magnetic resonance imaging was collected from 81 AD patients (44 females), 78 amnestic mild cognitive impairment patients (44 females), and 92 healthy controls (50 females). The FC analysis was conducted and the interaction effect between sex and group was investigated using two-factor variance analysis. The CPM was used to predict MoCA scores. There were sex-by-group interaction effects on FC between the left dorsolateral superior frontal gyrus and left middle temporal gyrus, left precuneus and right calcarine fissure surrounding cortex, left precuneus and left middle occipital gyrus, left middle temporal gyrus and left precentral gyrus, and between the left middle temporal gyrus and right cuneus. In the CPM, the positive network predictive model significantly predicted MoCA scores in both males and females. There were significant sex-by-group interaction effects on FC between the left precuneus and left middle occipital gyrus, and between the left middle temporal gyrus and right cuneus could predict MoCA scores in female patients. Our results suggest that there are sex differences in FC at different stages of AD. The sex-specific FC can further predict MoCA scores at individual level.


Asunto(s)
Enfermedad de Alzheimer , Conectoma , Enfermedades Neurodegenerativas , Femenino , Humanos , Masculino , Enfermedad de Alzheimer/diagnóstico por imagen , Caracteres Sexuales , Lóbulo Temporal
18.
Heliyon ; 10(5): e27380, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38495174

RESUMEN

Aim: To evaluate the subclinical cardiac involvement in COVID-19 patients without clinical cardiac evidence using cardiac MR imaging. Material and methods: Participants recovered from COVID-19 without cardiac symptoms and no cardiovascular medical history were enrolled in a prospective cohort study. They underwent baseline cardiac MR and follow-up cardiac MR > 300 days after discharge (n = 20). The study also included healthy controls (n = 20). Extracellular volume fraction (ECV), native T1, and 2D strain data were assessed and compared. Results: The ECV values of participants at baseline [30.0% (28.3%-32.5%)] and at follow-up [31.0% (28.0%-32.8%)] were increased compared to the healthy control group [27.0% (25.3%-28.0%)] (both p < 0.001). However, the ECV increase from baseline cardiac MR to follow-up cardiac MR was not significant (p = 0.378). There was a statistically significant difference in global native T1 between baseline [1140 (1108.3-1192.0) ms] and follow-up [1176.0 (1113.0-1206.3) ms] (p = 0.016). However, no native T1 difference was found between the healthy controls [1160.7 (1119.6-1195.4) ms] and the baseline (p = 0.394) or follow-up group (p = 0.168). The global T2 was 41(40-42) ms at follow-up which was within the normal range. In addition, We found a recovery in 2D GLS among COVID-19 participants between baseline and follow-up [-12.4(-11.7 to -14.3)% vs. -17.2(-16.2 to -18.3)%; p<0.001]. Conclusion: Using cardiac MR myocardial tissue and strain imaging parameters, 35% of people without cardiac symptoms or clinical evidence of myocardial injury still had subclinical myocardial tissue characteristic abnormalities at 300 days, but 2D GLS had recovered.

19.
Neurocrit Care ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38506972

RESUMEN

BACKGROUND: Frequency of imaging markers (FIM) has been identified as an independent predictor of hematoma expansion in patients with intracerebral hemorrhage (ICH), but its impact on clinical outcome of ICH is yet to be determined. The aim of the present study was to investigate this association. METHODS: This study was a secondary analysis of our prior research. The data for this study were derived from six retrospective cohorts of ICH from January 2018 to August 2022. All consecutive study participants were examined within 6 h of stroke onset on neuroimaging. FIM was defined as the ratio of the number of imaging markers on noncontrast head tomography (i.e., hypodensities, blend sign, and island sign) to onset-to-neuroimaging time. The primary poor outcome was defined as a modified Rankin Scale score of 3-6 at 3 months. RESULTS: A total of 1253 patients with ICH were included for final analysis. Among those with available follow-up results, 713 (56.90%) exhibited a poor neurologic outcome at 3 months. In a univariate analysis, FIM was associated with poor prognosis (odds ratio 4.36; 95% confidence interval 3.31-5.74; p < 0.001). After adjustment for age, Glasgow Coma Scale score, systolic blood pressure, hematoma volume, and intraventricular hemorrhage, FIM was still an independent predictor of worse prognosis (odds ratio 3.26; 95% confidence interval 2.37-4.48; p < 0.001). Based on receiver operating characteristic curve analysis, a cutoff value of 0.28 for FIM was associated with 0.69 sensitivity, 0.66 specificity, 0.73 positive predictive value, 0.62 negative predictive value, and 0.71 area under the curve for the diagnosis of poor outcome. CONCLUSIONS: The metric of FIM is associated with 3-month poor outcome after ICH. The novel indicator that helps identify patients who are likely within the 6-h time window at risk for worse outcome would be a valuable addition to the clinical management of ICH.

20.
Front Endocrinol (Lausanne) ; 15: 1335899, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38510696

RESUMEN

Objective: This study aims to determine the effectiveness of T1ρ in detecting myocardial fibrosis in type 2 diabetes mellitus (T2DM) patients by comparing with native T1 and extracellular volume (ECV) fraction. Methods: T2DM patients (n = 35) and healthy controls (n = 30) underwent cardiac magnetic resonance. ECV, T1ρ, native T1, and global longitudinal strain (GLS) values were assessed. Diagnostic performance was analyzed using receiver operating curves. Results: The global ECV and T1ρ of T2DM group (ECV = 32.1 ± 3.2%, T1ρ = 51.6 ± 3.8 msec) were significantly higher than those of controls (ECV = 26.2 ± 1.6%, T1ρ = 46.8 ± 2.0 msec) (all P < 0.001), whether there was no significant difference in native T1 between T2DM and controls (P = 0.264). The GLS decreased significantly in T2DM patients compared with controls (-16.5 ± 2.4% vs. -18.3 ± 2.6%, P = 0.015). The T1ρ and native T1 were associated with ECV (Pearson's r = 0.50 and 0.25, respectively, both P < 0.001); the native T1, T1ρ, and ECV were associated with hemoglobin A1c (Pearson's r = 0.41, 0.52, and 0.61, respectively, all P < 0.05); and the ECV was associated with diabetes duration (Pearson's r = 0.41, P = 0.016). The AUC of ECV, T1ρ, GLS, and native T1 were 0.869, 0.810, 0.659, and 0.524, respectively. Conclusion: In T2DM patients, T1ρ may be a new non-contrast cardiac magnetic resonance technique for identifying myocardial diffuse fibrosis, and T1ρ may be more sensitive than native T1 in the detection of myocardial diffuse fibrosis.


Asunto(s)
Cardiomiopatías , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/diagnóstico por imagen , Diabetes Mellitus Tipo 2/patología , Miocardio/patología , Corazón , Cardiomiopatías/patología , Fibrosis , Espectroscopía de Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...