Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.890
Filtrar
1.
Commun Biol ; 7(1): 1055, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191864

RESUMEN

Aging is a consequence of complex molecular changes, but whether a single microRNA (miRNA) can drive aging remains unclear. A miRNA known to be upregulated during both normal and premature aging is miR-29. We find miR-29 to also be among the top miRNAs predicted to drive aging-related gene expression changes. We show that partial loss of miR-29 extends the lifespan of Zmpste24-/- mice, an established model of progeria, indicating that miR-29 is functionally important in this accelerated aging model. To examine whether miR-29 alone is sufficient to promote aging-related phenotypes, we generated mice in which miR-29 can be conditionally overexpressed (miR-29TG). miR-29 overexpression is sufficient to drive many aging-related phenotypes and led to early lethality. Transcriptomic analysis of both young miR-29TG and old WT mice reveals shared downregulation of genes associated with extracellular matrix organization and fatty acid metabolism, and shared upregulation of genes in pathways linked to inflammation. These results highlight the functional importance of miR-29 in controlling a gene expression program that drives aging-related phenotypes.


Asunto(s)
Envejecimiento , MicroARNs , Fenotipo , Animales , MicroARNs/genética , MicroARNs/metabolismo , Envejecimiento/genética , Ratones , Progeria/genética , Progeria/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Noqueados , Ratones Endogámicos C57BL , Regulación de la Expresión Génica , Masculino , Longevidad/genética , Metaloendopeptidasas
2.
Eur J Haematol ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39135216

RESUMEN

BACKGROUND: Graft-versus-host disease (GVHD) is a recognized complication among individuals undergoing bone marrow transplantation (BMT). There is a requirement for supplementary data regarding the in-patient outcomes of GVHD in individuals who have undergone BMT. Our analysis seeks to assess the healthcare burden and outcomes associated with GVHD in hospitalized patients who have undergone BMT. METHOD: In this retrospective study, we used data from the National Inpatient Sample (NIS) database spanning from 2016 to 2019. Utilizing ICD-10 codes, we distinguished hospitalizations related to BMT and grouped them into two categories: those with GVHD and those without GVHD. Our areas of focus included in-hospital mortality, length of stay, charges, and associations related to GVHD. Unadjusted odds ratios/coefficients were computed through univariable analysis, followed by adjusted odds ratios (aORs)/coefficients from multivariable analysis that considered potential confounding factors. RESULTS: From 2016 to 2019, data were collected from 13,999 hospitalizations with bone marrow transplants. Among them, 836 had GVHD cases. Patient characteristics showed slight differences in mean age and demographics between the two groups, with GVHD patients having a mean age of 51.61 years and higher percentages of males and whites. Analyzing outcomes, patients with GVHD experienced significantly longer hospital stays (41.4 days vs. 21.3 days) and higher total hospital charges ($824,058 vs. $335,765). Adjusting for confounding factors, GVHD posed a substantial risk. The aOR for mortality in GVHD hospitalizations was 7.20 (95% CI: 5.54-9.36, p < .001). The coefficient for the length of stay was 19.36 days (95% CI: 17.29-21.42, p < .001), and the coefficient for total hospital charges was $453,733 (95% CI: $396,577 to $510,889, p < .001) in GVHD cases. Furthermore, GVHD in patients was associated with elevated risks of various medical conditions. The aORs for sepsis, pneumonia, acute respiratory failure, intubation and mechanical ventilation, Clostridium difficile infection, and acute kidney injury (AKI) in GVHD patients were 2.79 (95% CI: 2.28-3.41, p < .001), 3.30 (95% CI: 2.57-4.24, p < .001), 5.10 (95% CI: 4.01-6.49, p < .001), 4.88 (95% CI: 3.75-6.34, p < .001), 1.45 (95% CI: 1.13-1.86, p = .003), and 3.57 (95% CI: 2.97-4.29, p < .001). CONCLUSION: GVHD in individuals undergoing BMT is linked to elevated mortality rates, prolonged hospitalization, and higher healthcare costs. Moreover, they face a significantly increased risk of developing complications, such as sepsis, pneumonia, acute respiratory failure, C. difficile infection, and AKI. These results underscore the critical need for vigilant monitoring and effective GVHD management to improve patient outcomes and reduce the complications associated with BMT. Nevertheless, further prospective studies are essential to obtain a more profound understanding and a comprehensive assessment of outcomes in these hospitalized patients.

3.
Adv Sci (Weinh) ; : e2406633, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39116343

RESUMEN

Gallbladder cancer (GBC) is the most common malignant tumor of the biliary system, with poor response to current treatments. Abnormal alternative splicing has been associated with the development of a variety of tumors. Combining the GEO database and GBC mRNA-seq analysis, it is found high expression of the splicing factor polypyrimidine region- binding protein 3 (PTBP3) in GBC. Multi-omics analysis revealed that PTBP3 promoted exon skipping of interleukin-18 (IL-18), resulting in the expression of ΔIL-18, an isoform specifically expressed in tumors. That ΔIL-18 promotes GBC immune escape by down-regulating FBXO38 transcription levels in CD8+T cells to reduce PD-1 ubiquitin-mediated degradation is revealed. Using a HuPBMC mouse model, the role of PTBP3 and ΔIL-18 in promoting GBC growth is confirmed, and showed that an antisense oligonucleotide that blocked ΔIL-18 production displayed anti-tumor activity. Furthermore, that the H3K36me3 promotes exon skipping of IL-18 by recruiting PTBP3 via MRG15 is demonstrated, thereby coupling the processes of IL-18 transcription and alternative splicing. Interestingly, it is also found that the H3K36 methyltransferase SETD2 binds to hnRNPL, thereby interfering with PTBP3 binding to IL-18 pre-mRNA. Overall, this study provides new insights into how aberrant alternative splicing mechanisms affect immune escape, and provides potential new perspectives for improving GBC immunotherapy.

4.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3857-3867, 2024 Jul.
Artículo en Chino | MEDLINE | ID: mdl-39099359

RESUMEN

The study investigated the protective effect and mechanism of 2-phenylethyl-beta-glucopyranoside(Phe) from Huaizhong No.1 Rehmannia glutinosa on hypoxic pulmonary hypertension(PH), aiming to provide a theoretical basis for clinical treatment of PAH. Male C57BL/6N mice were randomly divided into normal group, model group, positive drug(bosentan, 100 mg·kg~(-1)) group, and low-and high-dose Phe groups(20 and 40 mg·kg~(-1)). Except for the normal group, all other groups were continuously subjected to model induction in a 10% hypoxic environment for 5 weeks, with oral administration for 14 days starting from the 3rd week. The cardiopulmonary function, right ventricular pressure, cough and asthma index, lung injury, cell apoptosis, oxidative stress-related indicators, immune cells, and phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)/mammalian target of rapamycin(mTOR)/hypoxic inducible factor 1α(HIF-1α) pathway-related proteins or mRNA levels were examined. Furthermore, hypoxia-induced pulmonary arterial smooth muscle cell(PASMC) were used to further explore the mechanism of Phe intervention in PH combined with PI3K ago-nist(740Y-P). The results showed that Phe significantly improved the cardiopulmonary function of mice with PH, decreased right ventricular pressure, cough and asthma index, and lung injury, reduced cell apoptosis, oxidative stress-related indicators, and nuclear levels of phosphorylated Akt(p-Akt) and phosphorylated mTOR(p-mTOR), inhibited the expression levels of HIF-1α and PI3K mRNA and proteins, and maintained the immune cell homeostasis in mice. Further mechanistic studies revealed that Phe significantly reduced the viability and migration ability of hypoxia-induced PASMC, decreased the expression of HIF-1α and PI3K proteins and nuc-lear levels of p-Akt and p-mTOR, and this effect was blocked by 740Y-P. Therefore, it is inferred that Phe may exert anti-PH effects by alleviating the imbalance of oxidative stress and apoptosis in lung tissues and regulating immune levels, and its mechanism may be related to the regulation of the PI3K/Akt/mTOR/HIF-1α pathway. This study is expected to provide drug references and research ideas for the treatment of PH.


Asunto(s)
Glucósidos , Hipertensión Pulmonar , Subunidad alfa del Factor 1 Inducible por Hipoxia , Hipoxia , Ratones Endogámicos C57BL , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Rehmannia , Serina-Treonina Quinasas TOR , Animales , Masculino , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Ratones , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Rehmannia/química , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Glucósidos/farmacología , Hipoxia/tratamiento farmacológico , Hipoxia/fisiopatología , Hipoxia/metabolismo , Transducción de Señal/efectos de los fármacos , Humanos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/química , Apoptosis/efectos de los fármacos
6.
J Control Release ; 374: 154-170, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39127448

RESUMEN

To realize high-quality vascularized bone regeneration, we developed a multifunctional hydrogel (SHPP-ZB) by incorporating BMP-2@ZIF-8/PEG-NH2 nanoparticles (NPs) into a sodium alginate/hydroxyapatite/polyvinyl alcohol hydrogel loaded with PDGF-BB, allowing for the sequential release of angiogenic and osteogenic growth factors (GFs) during bone repair. ZIF-8 served as a protective host for BMP-2 from degradation, ensuring high encapsulation efficiency and long-term bioactivity. The SHPP-ZB hydrogel exhibited enhanced mechanical strength and injectability, making it suitable for complex bone defects. It provided a swelling interface for tissue interlocking and the early release of Zn2+ and tannin acid (TA) to exert antioxidant and antibacterial effects, followed by the sequential release of angiogenic and osteogenic GFs to promote high-quality vascularized bone regeneration. In vitro experiments demonstrated the superior angiogenic and osteogenic properties of SHPP-ZB compared to other groups. In vivo experiments indicated that the sequential delivery of GFs via SHPP-ZB hydrogel could improve vascularized bone regeneration. Further, RNA sequencing analysis of regenerative bone tissue revealed that SHPP-ZB hydrogel promoted vascularized bone regeneration by regulating JUN, MAPK, Wnt, and calcium signaling pathways in vivo. This study presented a promising approach for efficient vascularized bone regeneration in large-scale bone defects.

7.
APL Bioeng ; 8(3): 036110, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39165611

RESUMEN

Cartilage damage, a common cause of osteoarthritis, requires medical imaging for accurate diagnosis of pathological changes. However, current instruments can acquire limited imaging information due to sensitivity and resolution issues. Therefore, multimodal imaging is considered an alternative strategy to provide valuable images and analyzes from different perspectives. Among all biomaterials, gold nanomaterials not only exhibit outstanding benefits as drug carriers, in vitro diagnostics, and radiosensitizers, but are also widely used as contrast agents, particularly for tumors. However, their potential for imaging cartilage damage is rarely discussed. In this study, we developed a versatile iodinated gadolinium-gold nanomaterial, AuNC@BSA-Gd-I, and its radiolabeled derivative, AuNC@BSA-Gd-131I, for cartilage detection. With its small size, negative charge, and multimodal capacities, the probe can penetrate damaged cartilage and be detected or visualized by computed tomography, MRI, IVIS, and gamma counter. Additionally, the multimodal imaging potential of AuNC@BSA-Gd-I was compared to current multifunctional gold nanomaterials containing similar components, including anionic AuNC@BSA, AuNC@BSA-I, and AuNC@BSA-Gd as well as cationic AuNC@CBSA. Due to their high atomic numbers and fluorescent emission, AuNC@BSA nanomaterials could provide fundamental multifunctionality for imaging. By further modifying AuNC@BSA with additional imaging materials, their application could be extended to various types of medical imaging instruments. Nonetheless, our findings showed that each of the current nanomaterials exhibited excellent abilities for imaging cartilage with their predominant imaging modalities, but their versatility was not comparable to that of AuNC@BSA-Gd-I. Thus, AuNC@BSA-Gd-I could be served as a valuable tool in multimodal imaging strategies for cartilage assessment.

8.
Bioact Mater ; 41: 371-384, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39157691

RESUMEN

Improving the comprehensive performance of low alloyed Mg is a significant challenge for biomedical applications. This paper developed a high-performance Mg-Zn alloy with uniform ultrafine grains and nano-precipitates through a straightforward, high-temperature reciprocating equal channel angle extrusion (ECAP) process and researched the microstructure, mechanical property, degradation behaviour, and biocompatibility of the developed alloy. Results showed that the lean Mg-2Zn alloy successfully refined grain to about 1 µm and produced plenty of nano-particles with uniform distribution, providing high comprehensive mechanical properties (YS: 235 MPa, UTS: 267 MPa, EL: 15.6 %). Additionally, Zn-riched nano-particles in the matrix could decrease the Zn aggregation at the corrosion layer-matrix interface and form a dense oxide film, achieving a low degradation rate (0.13 mm/year in vivo). Finally, this work realizes the low alloy content, low cost, and good properties of one biodegradable Mg alloy, which will benefit the promotion of future clinical applications.

9.
J Am Heart Assoc ; 13(16): e032327, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39119972

RESUMEN

BACKGROUND: There is scant evidence regarding the safety of antiplatelet therapy in acute ischemic stroke (AIS) patients with thrombocytopenia. Our study aims to address this concern by examining AIS patients with thrombocytopenia from a large database in real-world settings. METHODS AND RESULTS: We included patients with AIS with a platelet count <100×109/L who had complete records of antiplatelet drug use. Those requiring anticoagulation or having contraindications to antiplatelet therapy were excluded. Short-term safety outcomes were in-hospital bleeding events, while the long-term safety outcome was 1-year all-cause mortality. A good clinical outcome was defined as functional independence, indicated by a modified Rankin Scale score of 0 to 2 at discharge. Propensity score matched analyses were used. We screened 169 423 patients with AIS from 90 stroke centers in the CASE II register, ultimately enrolling 2808 noncardioembolic patients with thrombocytopenia. In the propensity score matched analyses, no significant difference was observed between the antiplatelet and nonantiplatelet groups in terms of intracranial hemorrhage (odds ratio=0.855 [95% CI, 0.284-5.478]; P=0.160) or gastrointestinal bleeding (odds ratio=2.034 [95% CI, 0.755-5.478]; P=0.160). Antiplatelet therapy was associated with improved functional outcomes at discharge (odds ratio=1.405 [95% CI, 1.028-1.920]; P=0.033), and showed a trend towards reducing 1-year mortality (odds ratio=0.395 [95% CI, 0.152-1.031]; P=0.058). CONCLUSIONS: The use of antiplatelet therapy lessened as platelet count decreased in patients with AIS with thrombocytopenia. However, our findings suggest that antiplatelet medications remain safe and effective for this population.


Asunto(s)
Accidente Cerebrovascular Isquémico , Inhibidores de Agregación Plaquetaria , Trombocitopenia , Humanos , Inhibidores de Agregación Plaquetaria/uso terapéutico , Inhibidores de Agregación Plaquetaria/efectos adversos , Femenino , Masculino , Trombocitopenia/tratamiento farmacológico , Trombocitopenia/sangre , Trombocitopenia/diagnóstico , Trombocitopenia/inducido químicamente , Accidente Cerebrovascular Isquémico/mortalidad , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/diagnóstico , Accidente Cerebrovascular Isquémico/sangre , Anciano , Persona de Mediana Edad , Anciano de 80 o más Años , Resultado del Tratamiento , Sistema de Registros , Recuento de Plaquetas , Puntaje de Propensión , Factores de Riesgo , Estado Funcional , Factores de Tiempo
10.
Int J Ophthalmol ; 17(8): 1403-1410, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39156790

RESUMEN

AIM: To investigate the effects of fibrillin-1 (FBN1) deletion on the integrity of retina-blood barrier function and the apoptosis of vascular endothelial cells under diabetic conditions. METHODS: Streptozotocin (STZ)-induced diabetic mice were used to simulate the diabetic conditions of diabetic retinopathy (DR) patients, and FBN1 expression was detected in retinas from STZ-diabetic mice and controls. In the Gene Expression Omnibus (GEO) database, the GSE60436 dataset was selected to analyze FBN1 expressions in fibrovascular membranes from DR patients. Using lentivirus to knock down FBN1 levels, vascular leakage and endothelial barrier integrity were detected by Evans blue vascular permeability assay, fluorescein fundus angiography (FFA) and immunofluorescence labeled with tight junction marker in vivo. High glucose-induced monkey retinal vascular endothelial cells (RF/6A) were used to investigate effects of FBN1 on the cells in vitro. The vascular endothelial barrier integrity and apoptosis were detected by trans-endothelial electrical resistance (TEER) assay and flow cytometry, respectively. RESULTS: FBN1 mRNA expression was increased in retinas of STZ-induced diabetic mice and fibrovascular membranes of DR patients (GSE60436 datasets) using RNA-seq approach. Besides, knocking down of FBN1 by lentivirus intravitreal injection significantly inhibited the vascular leakage compared to STZ-DR group by Evans blue vascular permeability assay and FFA detection. Expressions of tight junction markers in STZ-DR mouse retinas were lower than those in the control group, and knocking down of FBN1 increased the tight junction levels. In vitro, 30 mmol/L glucose could significantly inhibit viability of RF/6A cells, and FBN1 mRNA expression was increased under 30 mmol/L glucose stimulation. Down-regulation of FBN1 reduced high glucose (HG)-stimulated retinal microvascular endothelial cell permeability, increased TEER, and inhibited RF/6A cell apoptosis in vitro. CONCLUSION: The expression level of FBN1 increases in retinas and vascular endothelial cells under diabetic conditions. Down-regulation of FBN1 protects the retina of early diabetic rats from retina-blood barrier damage, reduce vascular leakage, cell apoptosis, and maintain vascular endothelial cell barrier function.

11.
Plant Commun ; : 101072, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39192582

RESUMEN

Plants utilize plasma membrane-localized pattern recognition receptors (PRRs) to perceive pathogen-associated molecular patterns (PAMPs) to activate broad-spectrum pattern-triggered immunity (PTI). However, the regulatory mechanism ensuring robust broad-spectrum plant immunity remains largely unknown. Here, we reveal the dual roles of the transcription factor WRKY8 in transcriptional regulation of PRR genes: repressing the nlp20/nlp24 receptor gene RLP23 whereas promoting the chitin receptor gene CERK1. Remarkably, SsNLP1 and SsNLP2, two nlp24 type PAMPs in the destructive fungal pathogen Sclerotinia sclerotiorum, activate two calcium-elicited kinases, CPK4 and CPK11 to phosphorylate WRKY8 and consequently release its inhibition on RLP23 expression to accumulate RLP23. Meanwhile, SsNLPs activate a RLCK type kinase, PBL19 to phosphorylate WRKY8 and consequently enhance the accumulation of CERK1. Intriguingly, RLP23 is repressed at late stage by PBL19-mediated phosphorylation of WRKY8, to avoid excessive immunity for normal growth. Our findings unveil a "killing two birds with one stone" strategy employed by plants to elicit robust broad-spectrum immunity, which is based on PAMP-triggered fine-tuning of a dual-role transcription factor to simultaneously amplify two PRRs recognizing PAMPs well conserved in a wide range of pathogens. Moreover, our results reveal a novel plant strategy based on fine-tuning of multiple PRR gene expression to balance the trade-off between growth and immunity.

12.
Sci Rep ; 14(1): 19644, 2024 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-39179617

RESUMEN

Our study investigated the causal relationship between immune cells, metabolites, and epilepsy using two-sample Mendelian Randomization (MR) and mediation MR analysis of 731 immune cell traits and 1400 metabolites. Our core methodology centered on inverse-variance weighted MR, supplemented by other methods. This approach was crucial in clarifying the potential intermediary functions of metabolites in the genetic links between traits of immune cells and epilepsy. We found a causal relationship between immune cells and epilepsy. Specifically, the genetically predicted levels of CD64 on CD14-CD16- are positively correlated with the risk of epilepsy (p < 0.001, OR = 1.0826, 95% CI 1.0361-1.1312). Similarly, metabolites also exhibit a causal relationship with both immune cells (OR = 1.0438, 95% CI 1.0087-1.0801, p = 0.0140) and epilepsy (p = 0.0334, OR = 1.0897, 95% CI 1.0068-1.1795), and sensitivity analysis was conducted to further validate these relationships. Importantly, our intermediate MR results suggest that the metabolite Paraxanthine to linoleate (18:2n6) ratio may mediate the causal relationship between immune cell CD64 on CD14-CD16- and epilepsy, with a mediation effect of 5.05%. The results suggest the importance of specific immune cell levels and metabolites in understanding epilepsy's pathogenesis, which is significant for its prevention and treatment.


Asunto(s)
Epilepsia , Análisis de la Aleatorización Mendeliana , Humanos , Epilepsia/genética , Epilepsia/metabolismo , Epilepsia/inmunología , Receptores de Lipopolisacáridos/genética , Receptores de Lipopolisacáridos/metabolismo , Receptores de IgG/genética , Receptores de IgG/metabolismo , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple
13.
J Biomech ; 174: 112269, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39128410

RESUMEN

Recent studies have suggested that irregular pulsation of intracranial aneurysm during the cardiac cycle may be potentially associated with aneurysm rupture risk. However, there is a lack of quantification method for irregular pulsations. This study aims to quantify irregular pulsations by the displacement and strain distribution of the intracranial aneurysm surface during the cardiac cycle using four-dimensional CT angiographic image data. Four-dimensional CT angiography was performed in 8 patients. The image data of a cardiac cycle was divided into approximately 20 phases, and irregular pulsations were detected in four intracranial aneurysms by visual observation, and then the displacement and strain of the intracranial aneurysm was quantified using coherent point drift and finite element method. The displacement and strain were compared between aneurysms with irregular and normal pulsations in two different ways (total and stepwise). The stepwise first principal strain was significantly higher in aneurysms with irregular than normal pulsations (0.20±0.01 vs 0.16±0.02, p=0.033). It was found that the irregular pulsations in intracranial aneurysms usually occur during the consecutive ascending or descending phase of volume changes during the cardiac cycle. In addition, no statistically significant difference was found in the aneurysm volume changes over the cardiac cycle between the two groups. Our method can successfully quantify the displacement and strain changes in the intracranial aneurysm during the cardiac cycle, which may be proven to be a useful tool to quantify intracranial aneurysm deformability and aid in aneurysm rupture risk assessment.


Asunto(s)
Tomografía Computarizada Cuatridimensional , Aneurisma Intracraneal , Humanos , Aneurisma Intracraneal/fisiopatología , Aneurisma Intracraneal/diagnóstico por imagen , Masculino , Femenino , Persona de Mediana Edad , Tomografía Computarizada Cuatridimensional/métodos , Anciano , Angiografía por Tomografía Computarizada/métodos , Adulto , Flujo Pulsátil
14.
Anal Chim Acta ; 1322: 343031, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39182985

RESUMEN

Single-atom nanozymes have garnered significant attention due to their exceptional atom utilization and ability to establish well-defined structure-activity relationships. However, conventional pyrolytic synthesis methods pose challenges such as high energy consumption and random local environments at the active sites, while achieving non-pyrolytic synthesis of single-atom nanozymes remains a formidable technical hurdle. The present study focuses on the synthesis of laccase-like iron-based single-atom nanozymes (Fe-SAzymes) using a non-pyrolysis method facilitated by microwave irradiation. Under low iron loading conditions, Fe-SAzymes exhibited significantly enhanced laccase activity (12.1 U/mg), surpassing that of laccase by 24-fold. Moreover, Fe-SAzymes demonstrated efficient catalytic oxidation of epinephrine (EP), enabling its colorimetric detection. Owing to the remarkable laccase activity of Fe-SAzymes, the conventional nanozymes EP detection time was reduced from 60 min to 20 min, with an impressive low detection limit as low as 2.95 µM. In addition, an ultra-sensitive fluorescence method for EP detection was developed using the internal filter effect of EP oxidation products and CDs combined with carbon dots probe. The detection limit of fluorescence method was only 0.39 µM. Therefore, an visual, fast, and highly sensitive dual-mode EP detection strategy has great potential in the clinical diagnostic industry.


Asunto(s)
Colorimetría , Epinefrina , Hierro , Lacasa , Lacasa/química , Lacasa/metabolismo , Colorimetría/métodos , Epinefrina/análisis , Hierro/química , Espectrometría de Fluorescencia , Límite de Detección , Nanoestructuras/química , Oxidación-Reducción , Fluorescencia , Microondas
15.
Eur J Pharm Biopharm ; : 114473, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39186959

RESUMEN

Hydroxychloroquine sulfate (HCQ) is currently being repurposed for cancer treatment. The antitumor mechanism of HCQ is inhibition of cellular autophagy, but its therapeutic potential is severely limited by poor solubility, lack of tumor targeting and lower cellular uptake. Therefore, utilization of human H-chain apoferritin (HFn) composed only of heavy subunits is an attractive approach for tumor targeting drug delivery. This study focused on pH-triggered encapsulation of HCQ within the inner cavity of HFn to form HFn@HCQ nanoparticles for tumor-targeted drug delivery. Characterization using a range of techniques has been used to confirm the successful establishment of HFn@HCQ. HFn@HCQ exhibited pH-responsive release behavior, with almost no drug release at pH 7.4, but 80% release at pH 5.0. Owing to its intrinsic binding to transferrin receptor 1 (TfR1), HFn@HCQ was significantly internalized through TfR1-mediated endocytosis, with a 4.4-fold difference of internalization amount across cell lines. Additionally, HFn@HCQ enhanced the antitumor effect against four different cancer cell lines when compared against HCQ alone, especially in TfR1 high-expressing cells, where the inhibitory effect was 3-fold higher than free HCQ. The autophagy inhibition of HFn@HCQ has been demonstrated, which is a major pathway to induce cancer cell death. According to current findings, HFn based drug delivery is a promising strategy to target and kill TfR1 overexpressing tumor cells.

16.
Front Genet ; 15: 1410381, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39139823

RESUMEN

Spastic paraplegia type 4 (SPG4), the predominant form of Autosomal Dominant Hereditary spastic paraplegia (AD-HSP), is characterized by variants in the SPAST gene. This study reports a unique case of a late-onset SPG4 in a Han Chinese male, manifesting primarily as gait disturbances from lower extremity spasticity. Uncovered through whole-genome sequencing, a previously undocumented frameshift variant, c.1545dupA in exon 14 of the SPAST gene, was identified. Notably, this variant was absent in asymptomatic parents with confirmed paternity and maternity status, suggesting a de novo variant occurrence. This discovery emphasizes the potential of de novo variants to exhibit a late-onset pure pattern, extending the SPG4 variant spectrum, and consideration of such variants should be given in HSP patients with a negative family history.

17.
J Autism Dev Disord ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39088144

RESUMEN

Studies have reported inconsistent results regarding associations between parental depression and offspring neurodevelopmental disorders, such as developmental delay and autism spectrum disorder (ASD). In all, 7,593 children who were born between 1996 and 2010 in Taiwan and had at least one parent with major depressive disorder and 75,930 birth-year- and sex-matched children of parents without major depressive disorder were followed from 1996 or time of birth to the end of 2011. Intergroup differences in neurodevelopmental conditions-including ASD, attention-deficit hyperactivity disorder (ADHD), tic disorder, developmental delay, and intellectual disability (ID)-were assessed. Compared with the children in the control group, the children of parents with major depression were more likely [hazard ratio (HR), 95% confidence interval (CI)] to develop ADHD (1.98, 1.80-2.18), ASD (1.52, 1.16-1.94), tic disorder (1.40, 1.08-1.81), developmental delay (1.32, 1.20-1.45), and ID (1.26, 1.02-1.55). Parental depression was associated with offspring neurodevelopmental disorders, specifically ASD, ADHD, developmental delay, ID, and tic disorder. Therefore, clinicians should closely monitor the neurodevelopmental conditions of children of parents with depression.

18.
J Ethnopharmacol ; 334: 118579, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39025165

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Dingxian Pill (DXP), a famous traditional Chinese medicine prescription, and has been widely proven to have positive therapeutic effects on "Xianzheng" (the name of epilepsy in ancient China). However, the anti-epileptic molecular mechanisms of DXP are not yet fully understood and remain to be further investigated. AIM OF THE STUDY: To elucidate the molecular mechanism of DXP's improvement in epileptic neuronal loss, damage and apoptosis by regulating TNF-α/TNFR1 signaling pathway. MATERIALS AND METHODS: Sixty Kunming mice were randomly divided in 6 groups: control group (equal volume of normal saline), model group (180 mg kg-1 pilocarpine hydrochloride - used to establish the epilepsy animal model), carbamazepine group (30 mg kg-1), and low, medium, and high-dose Dingxian Pill groups (4.08, 8.16, and 16.32 g kg-1, respectively - oral administration once daily for 2 weeks). Successful establishment of the epileptic mouse model was monitored with electroencephalography. Pathological changes in hippocampal tissue were analyzed with hematoxylin-eosin staining. Hippocampal neuronal apoptosis was analyzed with TUNEL staining. TNF-α, TNFR1, TRADD, FADD, and caspase-8 mRNA and protein expression levels in hippocampal tissue were analyzed with real-time quantitative polymerase chain reaction, immunohistochemistry, and Western blot, respectively. Cleaved caspase-8 protein levels in hippocampal tissue were measured with immunohistochemistry and Western blot. RESULTS: Compared to control, the model group showed an increase in continuous epileptic discharge waves on EEG, a damaged hippocampal neuron morphological structure, increased hippocampal neuronal apoptosis, and significantly increased TNF-α, TNFR1, TRADD, FADD, and caspase-8 mRNA and protein levels, and increased caspase-8 cleavage (P < 0.05). Compared to the model group, the carbamazepine group as well as the low-, medium-, and high-dose Dingxian Pill groups showed decreased epileptic discharges on EEG, an obvious hippocampal neuron morphological structure restoration, varying degrees of attenuated hippocampal neuronal apoptosis, and significantly decreased TNF-α, TNFR1, TRADD, FADD, and caspase-8 mRNA and protein levels as well as decreased caspase-8 cleavage (P < 0.05). CONCLUSIONS: Dingxian Pill exerts an anti-epileptic effect through inhibition of TNF-α/TNFR1 signaling pathway-mediated apoptosis in hippocampal neurons.


Asunto(s)
Anticonvulsivantes , Apoptosis , Medicamentos Herbarios Chinos , Epilepsia , Hipocampo , Neuronas , Receptores Tipo I de Factores de Necrosis Tumoral , Transducción de Señal , Factor de Necrosis Tumoral alfa , Animales , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Apoptosis/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Epilepsia/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Masculino , Neuronas/efectos de los fármacos , Neuronas/patología , Neuronas/metabolismo , Ratones , Anticonvulsivantes/farmacología , Pilocarpina/toxicidad , Modelos Animales de Enfermedad , Animales no Consanguíneos
19.
Artículo en Inglés | MEDLINE | ID: mdl-39042538

RESUMEN

Sequential learning using transformer has achieved state-of-the-art performance in natural language tasks and many others. The key to this success is the multi-head self attention which encodes and gathers the features from individual tokens of an input sequence. The mapping or decoding is performed to produce an output sequence via cross attention. There are threefold weaknesses by using such an attention framework. First, since the attention would mix up the features of different tokens in input and output sequences, it is likely that redundant information exists in sequence data representation. Second, the patterns of attention weights among different heads tend to be similar. The model capacity is bounded. Third, the robustness in an encoder-decoder network against the model uncertainty is disregarded. To handle these weaknesses, this paper presents a Bayesian semantic and disentangled mask attention to learn latent disentanglement in multi-head attention where the redundant features in transformer are compensated with the latent topic information. The attention weights are filtered by a mask which is optimized through semantic clustering. This attention mechanism is implemented according to Bayesian learning for clustered disentanglement. The experiments on machine translation and speech recognition show the merit of Bayesian clustered disentanglement for mask attention.

20.
J Mater Sci Mater Med ; 35(1): 42, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073469

RESUMEN

Studies have shown that the inhibition of phosphatase and tensin homolog deleted on chromosome 10 (PTEN)was neuroprotective against ischemia/reperfusion(I/R) injury. Bisperoxovanadium (bpV), a derivative of vanadate, is a well-established inhibitor of PTEN. However, its function islimited due to its general inadequacy in penetrating cell membranes. Mxene(Ti3C2Tx) is a novel two-dimensional lamellar nanomaterial with an excellent ability to penetrate the cell membrane. Yet, the effects of this nanomaterial on nervous system diseases have yet to be scrutinized. Here, Mxene(Ti3C2Tx) was used for the first time to carry bpV(HOpic), creating a new nanocomposite Mxene-bpV that was probed in a cerebral I/R injury model. The findings showed that this synthetic Mxene-bpV was adequately stable and can cross the cell membraneeasily. We observed that Mxene-bpV treatment significantly increased the survival rate of oxygen glucose deprivation/reperfusion(OGD/R)--insulted neurons, reduced infarct sizes and promoted the recovery of brain function after mice cerebral I/R injury. Crucially, Mxene-bpV treatment was more therapeutically efficient than bpV(HOpic) treatment alone over the same period. Mechanistically, Mxene-bpV inhibited the enzyme activity of PTEN in vitro and in vivo. It also promoted the expression of phospho-Akt (Ser473) by repressing PTEN and then activated the Akt pathway to boost cell survival. Additionally, in PTEN transgenic mice, Mxene-bpV suppressed I/R-induced inflammatory response by promoting M2 microglial polarization through PTEN inhibition. Collectively, the nanosynthetic Mxene-bpV inhibited PTEN' enzymatic activity by activating Akt pathway and promoting M2 microglial polarization, and finally exerted neuroprotection against cerebral I/R injury.


Asunto(s)
Microglía , Fármacos Neuroprotectores , Fosfohidrolasa PTEN , Proteínas Proto-Oncogénicas c-akt , Daño por Reperfusión , Transducción de Señal , Compuestos de Vanadio , Animales , Microglía/efectos de los fármacos , Microglía/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratones , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/prevención & control , Transducción de Señal/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Compuestos de Vanadio/farmacología , Compuestos de Vanadio/química , Fosfohidrolasa PTEN/metabolismo , Masculino , Ratones Endogámicos C57BL , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/patología , Polaridad Celular/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Nanocompuestos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...