Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Am J Chin Med ; : 1-23, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39343993

RESUMEN

Isoliquiritigen (ISL), a constituent of licorice, has been shown to possess antitumorigenic effects in diverse cancer types. In this study, we observed that ISL suppressed breast tumor development significantly more effectively in immunocompetent mice than in immunocompromised ones. In exploring the cause of such a discrepancy, we detected robust tumor infiltration of CD8[Formula: see text] T lymphocytes in mice treated with ISL, not seen in tumors derived from vehicle-treated mice. Moreover, we found a dramatic reduction in PD-L1 in both experimental breast tumors and cultured breast cancer cells upon ISL treatment. In further experiments, we showed that ISL selectively elevated miR-200c in breast cancer and confirmed that PD-L1 mRNA is the target of miR-200c in both murine and human breast cancer cells. ISL suppression of PD-L1 was functionally linked to miR-200c/ZEB1/2 because (1) ISL diminished ZEB1/2; (2) knockdown of ZEB1/2 led to the disappearance of PD-L1; and (3) miR-200c antagomiR disabled ISL to reduce PD-L1. We found evidence that ISL reduced the level of PD-L1 by simultaneously intercepting the ERK and Src signaling pathways. In agreement with clinical finding that PD-L1 antibodies enhance efficacy of taxane-based therapy, we showed that ISL improved the tumoricidal effects of paclitaxel in an orthopedic murine breast tumor model. This study demonstrates that ISL-led tumor suppression acts through the augmentation of host antitumor immunity.

2.
Molecules ; 28(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37175205

RESUMEN

Glioblastoma (GBM) is the most aggressive brain tumor, with high mortality. Timosaponin AIII (TIA), a steroidal saponin isolated from the medicinal plant Anemarrhena asphodeloides Bge., has been shown to possess anticancer properties in various cancer types. However, the effect of TIA on GBM is unknown. In this study, we reveal that TIA not only inhibited U87MG in vitro cell growth but also in vivo tumor development. Moreover, we found that the cause of TIA-induced cell growth suppression was apoptosis. When seeking to uncover antitumor mechanisms of TIA, we found that TIA diminished the expression of cGMP-specific phosphodiesterase 5(PDE5) while elevating the levels of guanylate cyclases (sGCß), cellular cGMP, and phosphorylation of VASPser239. Following the knockdown of PDE5, PDE5 inhibitor tadalafil and cGMP analog 8-Bro-cGMP both inhibited cell growth and inactivated ß-catenin; we reason that TIA elicited an antitumor effect by suppressing PDE5, leading to the activation of the cGMP signaling pathway, which, in turn, impeded ß-catenin expression. As ß-catenin is key for cell growth and survival in GBM, this study suggests that TIA elicits its anti-tumorigenic effect by interfering with ß-catenin function through the activation of a PDE5/cGMP functional axis.


Asunto(s)
Glioblastoma , beta Catenina , Humanos , beta Catenina/metabolismo , Glioblastoma/tratamiento farmacológico , Esteroides/farmacología , Apoptosis , Transducción de Señal , GMP Cíclico/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-36411840

RESUMEN

Fuzheng Huayu's (FZHY) formula ameliorated liver fibrosis in clinical and experimental practice. Based on the close link between fibrosis and inflammation, its anti-inflammatory effect and related mechanisms were explored in this present study. With the aid of the inflammatory macrophage model, FZHY significantly blocked nitrite accumulation without observable cytotoxicity due to its suppression of inducible nitric oxide synthase (iNOS) gene and protein expressions in a concentration-depended manner. Proinflammatory mediators including IL-6, CD86, and CD40 were also restrained by FZHY. Interestingly, FZHY induced anti-inflammatory mediators heme oxygenase 1 (HO-1) and peroxisome proliferator-activated receptor γ (PPAR-γ) expressions simultaneously. Downregulation of iNOS and miR-155 and upregulation of PPAR-γ were also observed in CCl4-induced liver fibrosis mice upon FZHY administration. Mechanically, FZHY strikingly eliminated the phosphorylation of STAT1 and MAPK. Taken together, FZYH regulated the balance of proinflammatory and anti-inflammatory mediators partially via modulating STAT1/MAPK pathways and the miR-155/PPAR-γ axis.

4.
Zhongguo Zhong Yao Za Zhi ; 47(24): 6679-6686, 2022 Dec.
Artículo en Chino | MEDLINE | ID: mdl-36604918

RESUMEN

Non-targeted metabonomics was used to investigate the metabolite changes in the glioblastoma orthotopic tumor-bearing mice after timosaponin AⅢ(TIA) intervention to explore the metabolic relevant mechanism of glioblastoma and TIA intervention. The mice were randomly divided into a blank group, a model group, and a TIA group. HPLC-LTQ-Orbitrap Elite liquid chromatography-mass spectrometry was used to detect the metabolite changes in the serum of rats in the three groups after treatment for 4 weeks. Principal component analysis(PCA) and orthogonal partial least squares discriminant analysis(OPLS-DA) were performed on the metabolites, and the differential metabolites were selected based on VIP values and P values(P<0.05). The results showed that TIA significantly inhibited the in vivo glioblastoma growth, but it had limited influence on body weight. Serum samples were clearly distinguishable among groups. As compared with the blank group, six metabolites including ceramide, succinic acid, α-ketoglutarate acid(αKG), citric acid, indophenol sulfate, and 3 a, 6 b, 7 b-trihydroxy-5 b-cholic acid in the model group significantly decreased. As compared with the model group, five metabolites except phenol sulfate, PC[20:4(5Z,7E,11Z,14Z)-OH(9)/diMe(9,3)], o-palmitoyl carnitine, α-ketoglutarate acid, and citric acid in the TIA group significantly increased. According to the MetaboAnalyst enrichment analysis, the metabolic pathways were enriched in the tricarboxylic acid cycle, and alanine, aspartic acid, and glutamate metabolism. These results show that during the glioblastoma growth process, the metabolites including αKG and citric acid are down-regulated, and TIA exerts the anti-glioblastoma growth effect through the regulation of tricarboxylic acid cycle, and alanine, aspartic acid, and glutamate metabolism to elevate the levels of αKG, citric acid, and other metabolites.


Asunto(s)
Ácido Aspártico , Ácidos Cetoglutáricos , Animales , Ratones , Ratas , Alanina , Biomarcadores , Glutamatos , Metabolómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA