Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-386532

RESUMEN

Combating the COVID-19 pandemic requires potent and low-cost therapeutics. We identified a novel series of single-domain antibodies (i.e., nanobody), Nanosota-1, from a camelid nanobody phage display library. Structural data showed that Nanosota-1 bound to the oft-hidden receptor-binding domain (RBD) of SARS-CoV-2 spike protein, blocking out viral receptor ACE2. The lead drug possessing an Fc tag (Nanosota-1C-Fc) bound to SARS-CoV-2 RBD with a Kd of 15.7picomolar ([~]3000 times more tightly than ACE2 did) and inhibited SARS-CoV-2 infection with an ND50 of 0.16microgram/milliliter ([~]6000 times more potently than ACE2 did). Administered at a single dose, Nanosota-1C-Fc demonstrated preventive and therapeutic efficacy in hamsters subjected to SARS-CoV-2 infection. Unlike conventional antibody drugs, Nanosota-1C-Fc was produced at high yields in bacteria and had exceptional thermostability. Pharmacokinetic analysis of Nanosota-1C-Fc documented a greater than 10-day in vivo half-life efficacy and high tissue bioavailability. Nanosota-1C-Fc is a potentially effective and realistic solution to the COVID-19 pandemic. Impact statementPotent and low-cost Nanosota-1 drugs block SARS-CoV-2 infections both in vitro and in vivo and act both preventively and therapeutically.

2.
Protein & Cell ; (12): 130-141, 2013.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-757840

RESUMEN

Interferon (IFN)-mediated pathways are a crucial part of the cellular response against viral infection. Type III IFNs, which include IFN-λ1, 2 and 3, mediate antiviral responses similar to Type I IFNs via a distinct receptor complex. IFN-λ1 is more effective than the other two members. Transcription of IFN-λ1 requires activation of IRF3/7 and nuclear factor-kappa B (NF-κB), similar to the transcriptional mechanism of Type I IFNs. Using reporter assays, we discovered that viral infection induced both IFN-λ1 promoter activity and that of the 3'-untranslated region (UTR), indicating that IFN-λ1 expression is also regulated at the post-transcriptional level. After analysis with microRNA (miRNA) prediction programs and 3'UTR targeting site assays, the miRNA-548 family, including miR-548b-5p, miR-548c-5p, miR-548i, miR-548j, and miR-548n, was identified to target the 3'UTR of IFN-λ1. Further study demonstrated that miRNA-548 mimics down-regulated the expression of IFN-λ1. In contrast, their inhibitors, the complementary RNAs, enhanced the expression of IFN-λ1 and IFN-stimulated genes. Furthermore, miRNA-548 mimics promoted infection by enterovirus-71 (EV71) and vesicular stomatitis virus (VSV), whereas their inhibitors significantly suppressed the replication of EV71 and VSV. Endogenous miRNA-548 levels were suppressed during viral infection. In conclusion, our results suggest that miRNA-548 regulates host antiviral response via direct targeting of IFN-λ1, which may offer a potential candidate for antiviral therapy.


Asunto(s)
Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Regiones no Traducidas 3' , Antivirales , Farmacología , Usos Terapéuticos , Secuencia de Bases , Regulación hacia Abajo , Células Hep G2 , Hepatitis B Crónica , Quimioterapia , Metabolismo , Patología , Factor 3 Regulador del Interferón , Metabolismo , Factor 7 Regulador del Interferón , Metabolismo , Interleucinas , Genética , Metabolismo , Leucocitos Mononucleares , Metabolismo , MicroARNs , Metabolismo , FN-kappa B , Metabolismo , Poli I-C , Farmacología , Usos Terapéuticos , Regiones Promotoras Genéticas , Interferencia de ARN , ARN Interferente Pequeño , Metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...