Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biofabrication ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38996408

RESUMEN

Recent 3D-printing research showed the potential of using plant-protein-enriched inks to fabricate cultivated meat (CM) via agar-based support baths. However, for fabricating large, customized, structured, thick cellular constructs and further cultivation, improved 3D-printing capabilities and diffusion limit circumvention are warranted. The presented study harnesses advanced printing and thick tissue engineering (TE) concepts for such purpose. By improving bath composition and altering printing design and execution, large-scale, marbled, 0.5-cm-thick rib-eye shaped constructs were obtained. The constructs featured stable fibrous architectures comparable to those of structured-meat products. Customized multi-cellular constructs with distinct regions were produced as well. Furthermore, sustainable 1-cm-thick cellular constructs were carefully designed and produced, which successfully maintained cell viability and activity for 3 weeks, through the combined effects of void-incorporation and dynamic culturing. As large, geometrically complex construct fabrication suitable for long-term cellular cultivation was demonstrated, these findings hold great promise for advancing structured CM research.

2.
Commun Biol ; 5(1): 927, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36071206

RESUMEN

Cultured meat can provide a sustainable and more ethical alternative to conventional meat. Most of the research in this field has been focused on developing muscle tissue, as it is the main component of meat products, while very few studies address cultured fat tissue, an essential component in the human diet and determinant of meat quality, flavor, juiciness, and tenderness. Here, we engineered bovine fat tissue for cultured meat and incorporated it within engineered bovine muscle tissue. Mesenchymal stem cells (MSCs) were derived from bovine adipose tissue and exhibited the typical phenotypic profile of adipose-derived MSCs. MSC adipogenic differentiation and maturation within alginate-based three-dimensional constructs were optimized to yield a fat-rich edible engineered tissue. Subsequently, a marble-like construct, composed of engineered bovine adipose and muscle tissues, was fabricated, mimicking inter- and intra-muscular fat structures.


Asunto(s)
Carbonato de Calcio , Células Madre Mesenquimatosas , Adipogénesis , Tejido Adiposo , Animales , Bovinos , Humanos , Carne
3.
Biomaterials ; 284: 121487, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35421802

RESUMEN

Cultivated meat harnesses tissue engineering (TE) concepts to create sustainable, edible muscle tissues, for addressing the rising meat product demands and their global consequences. As 3D-printing is a promising method for creating thick and complex structures, two plant-protein-enriched scaffolding compositions were primarily assessed in our work as 3D-printable platforms for bovine satellite cells (BSC) maturation. Mixtures of pea protein isolate (PPI) and soy protein isolate (SPI) with RGD-modified alginate (Alginate(RGD)) were evaluated as prefabricated mold-based and 3D-printed scaffolds for BSC cultivation, and ultimately, as potential bioinks for cellular printing. Mold-based protein enriched scaffolds exhibited elevated stability and stiffness compared to ones made of Alginate(RGD) alone, while allowing unhindered BSC spreading and maturation. Extrusion based 3D-printing with the two compositions was then developed, while using an edible, removable agar support bath. Successfully fabricated constructs with well-defined geometries supported BSC attachment and differentiation. Finally, cellular bioprinting was demonstrated with PPI-enriched bioinks. Cell recovery post-printing was observed in two cultivation configurations, reaching ∼80-90% viability over time. Moreover, cells could mature within 3D-printed cellular constructs. As animal-derived materials were avoided in our scaffold fabrication process, and pea-protein is known for its low allergic risk, these findings have great promise for further cultivated meat research.


Asunto(s)
Bioimpresión , Andamios del Tejido , Alginatos , Animales , Bioimpresión/métodos , Bovinos , Carne , Oligopéptidos , Proteínas de Plantas , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...