Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(26): 17618-17623, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38899905

RESUMEN

Upconversion (UC) of incoherent near-infrared (NIR) photons to visible photons through sensitized triplet-triplet annihilation (TTA) shows great potential in solar energy harvesting, photocatalysis, and bioimaging. However, the efficiencies of NIR-to-visible TTA-UC systems lag considerably behind those of their visible-to-visible counterparts. Here, we report a novel NIR-to-yellow TTA-UC system with a record quantum yield (QY) of 21.1% (out of a 100% maximum) and a threshold intensity of 20.2 W/cm2 by using InAs-based colloidal quantum dots (QDs) as triplet photosensitizers. The key to success is the epitaxial growth of an ultrathin ZnSe shell on InAs QDs that passivates the surface defects without impeding triplet energy transfer (TET) from QDs to surface-bound tetracene. Transient absorption spectroscopy verifies efficient TET efficiency of more than 80%, along with sufficiently long triplet lifetime of tetracene molecules, leading to high-performance UC. Moreover, high UC QYs (>18%) remain when larger InAs-based QDs─of which the absorption peak is red-shifted by more than 50 nm─are used as sensitizers, indicating the great potential of InAs QDs to utilize NIR photons with lower energy.

2.
ACS Appl Mater Interfaces ; 15(51): 59432-59443, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38108306

RESUMEN

Acidic oxygen evolution reaction (OER) remains a significant challenge due to the low activity and/or poor stability of the catalysts, even with state-of-the-art catalysts such as IrO2 and RuO2. Herein, we propose a strategy to enhance both the catalytic activity and stability of IrRu oxides for acidic OER by doping non-noble metal W. The W-doped IrRu3Ox (W-IrRu3Ox) undergoes a process of W leaching and reconstruction during the OER, leading to a more uniform distribution of elements, while the electronegative nature of W influences the electronic structures of Ir and Ru in W-IrRu3Ox. The dual role of W in promoting the formation of active site Ir5+ and inhibiting the concentration of soluble Ru>4+ ions results in a synergistic enhancement of both the activity and stability of acidic OER. Remarkably, W-IrRu3Ox exhibits outstanding catalytic activity for the OER in 0.5 M H2SO4, with a high stability of more than 500 h. This work presents a novel and feasible strategy for the development of efficient and stable catalysts for acid OER, shedding light on the design of advanced electrocatalysts for energy conversion and storage applications.

3.
Artículo en Inglés | MEDLINE | ID: mdl-36753052

RESUMEN

Pure-bromide quasi-2D perovskite (PBQ-2DP) promises high-performance light-emitting diodes (LEDs), while a challenge remains on control over its n-phase distribution for bright true-blue emission. Present work addresses the challenge through exploring the passivation molecule of amino acid with reinforced binding energy, which generates narrow n-phase distribution preferentially at n = 3 with true blue emission at 478 nm. Consequently, a peak external quantum efficiency of 5.52% and a record brightness of 512 cd m-2 are achieved on the PBQ-2DP-based true blue PeLED, these both values located among the top in the records of similar devices. We further reveal that the electron-phonon coupling results in the red-shifted emission in the PBQ-2DP film, suggesting that the view of n-phase distribution dominated true-blue emission in PBQ-2DP needs to be revisited, pointing out a guideline of electron-phonon coupling suppression to relieve the strait of realizing true blue or even deep blue emission in the PBQ-2DP film.

4.
J Colloid Interface Sci ; 627: 569-577, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35870409

RESUMEN

Interfacial nanofilms with nonlinear optical (NLO) properties were prepared via confined dynamic condensation of 4,4'-methylenedianiline (MDA) with the synthesized 2,3-bis(4-(bis(4-formylphenyl)amino)phenyl)fumaronitrile (BTFA). Investigated using the open-aperture Z-scan technique, BTFA showed reverse saturable absorption ascribed to the synergetic mechanisms of two-photon and excited-state absorption. In contrast, the as-prepared nanofilms demonstrated broadband saturable absorption within the spectral range of 720∼1700 nm. The characteristics of nonlinear absorption coefficient (ß) decreased along with increasing the incident pulse intensity. Taking advantage of the flexibility and post-machinability properties, the folding layers of the nanofilms offered the feasibility to fine-tune the specific NLO responses. The optimal ß value was found to be -10.1 cm/MW for eight-layer nanofilm as well as the normalized transmittance increased up to 35-fold at 800 nm. Utilized as a conceptual saturable absorber, the representative modulation depth and saturation intensity were observed to be around 2.4% and 7.37 GW/cm2 at 800 nm, respectively, comparable to traditional two-dimensional (2D) materials. Aiming to clarify the possible underlying physical processes, a four-level model was employed to illustrate the fast relaxation of the excited states. Present work demonstrates that proper design of building blocks combined with interfacially confined dynamic condensation enables rational development of high-performance NLO materials.

5.
J Phys Chem B ; 126(26): 4939-4947, 2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35754397

RESUMEN

Intramolecular charge transfer and excited-state symmetry breaking have a significant effect on the nonlinear optical properties of multipolar chromophores. Rigid and nonplanar perylene bisimide derivatives (PBIs) functionalized at bay positions were comparatively and comprehensively investigated. In apolar solvents, two quadrupolar molecular rotors showed an obvious decrease of the A0-0/A0-1 ratios, suggesting strong exciton coupling with the adjacent PBI units initiated by the π-π stacking. The vanishment of the preferable dimer emission in polar solvents supported the plausible phenomena of excited-state symmetry breaking, thanks to the facile rotation around the rigid linkers. Comparative femtosecond transition absorption studies confirmed their notable differences in relaxation dynamics and the generation of radical anions (PBI•-) and cations (PBI•+). The maxima two-photon absorption (2PA) wavelengths obtained for the molecular rotors were slightly red-shifted to 670 nm with intrinsic resonance-enhanced characteristics, reflecting the synergistic effect of functional positions and molecular architectures. Meanwhile, the obvious increase of significant 2PA cross-section values in polar solvents illustrated the stabilization of the symmetry-broken dipolar states. Further femtosecond Z-scan also manifested the contribution of excited-state dynamics on the nonlinear optical properties of multipolar chromophores.

6.
J Phys Chem B ; 125(41): 11540-11547, 2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34636571

RESUMEN

Push-pull organic structures characterized by an intramolecular charge transfer (ICT) process and π-electron delocalization are potentially interesting luminescent materials. A series of three-dimensional o-carborane-containing perylene bisimide derivatives (PBIs) were synthesized, and their optical properties were systematically investigated to illustrate the stereo effect, especially on the two-photon absorption (2PA) and optical power limiting (OPL) properties. Open-aperture Z-scan curves showed that all four PBIs displayed strong and broad two-photon absorptivities based on the resonance-enhanced phenomenon. The maximum degenerate two-photon absorption cross section (δ2PA) increased with the number of PBI substituents. The derivative CB-PBI possessed a δ2PA value of ∼2400 GM at 650 nm, a significant enhancement in comparison with that of the parent PBI (∼719 GM), ascribed to the present stereo effect. When the aromatic-donating units changed from naphthyl and pyrenyl to PBI, the generated multidimensional intramolecular charge transfer (ICT) from the aromatic units to the o-carborane cage contributed to the 2PA processes. All of the fluorophores exhibited excellent optical power limiting (OPL) performances as well as a minimum limiting threshold of ∼4.98 mJ/cm2 for CB-PBI. These significant results not only allow us to get deep insight into the nature of the fundamental stereo effect and nonlinear optical (NLO) response involved but also guide us toward the design of new multifunctional luminescent materials.

7.
ACS Appl Mater Interfaces ; 13(37): 44760-44767, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34505502

RESUMEN

The optical plasmonic cavity (OPC) including the metallic optical nanoantennas and a metal film exhibits extreme field enhancement for the increased spontaneous emission rate of emitters. The resonance wavelength of the OPC can be easily controlled by the volume of the OPC and the localized surface plasmonic resonances (LSPRs) of the nanoantennas, facilitating the effective coupling of OPC and the emitters. However, involving the OPC into the light emission-enhanced solution-processed devices is still a difficult challenge. The trade-off between the metallic structure of OPC and the solution procedures limits the performance enhancement of the electrical-driven devices. In this work, we construct a device-compatible OPC that allows the characterization of the carrier dynamics of quantum dot (QD) films in the real devices in-suit. The radiative recombination rate and relaxation rate of carriers in QDs are increased by the LSPR effect of the silver nanocubes for luminescence enhancement. The OPC further increases the spontaneous emission rate of QD films, achieving a Purcell factor of 166 and improving the electroluminescence of the OPC-based QD light-emitting diodes (QLEDs). The design of the OPC-involved QLEDs offers a solution for addressing the limitation of fabrication of OPC-combined solution-processed optoelectronic light sources.

8.
ACS Appl Mater Interfaces ; 13(24): 28985-28995, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34121390

RESUMEN

Structure-property relationship for fluorophores with favorable nonlinear optical (NLO) properties are promising topics in organic chemistry and material science. Herein, a series of terthiophene-o-carborane dyads and triads covalently linked with different end-capping styles were readily synthesized and comprehensively investigated. Quantitative values of the crystal and packing structures, photophysical parameters including aggregation-induced emission (AIE) and two-photon absorption (2PA) were provided. Significant impact of carborane unit for introducing the AIE characteristic has been investigated in contrast to the parent oligothiophene. All the obtained fluorophores exhibit maximum absorption around 370 nm in THF and emit bright reddish photoluminscence with absolute fluorescence quantum yields above 16% in solid states. Intramolecular charge communication between oligothiophene and carborane plays important roles in the related NLO properties. These results are supported well by the time-dependent DFT theoretical calculations. Effective 2PA cross sections (δ2PA = 95-355 GM@650 nm) and transition dipole moments of the derivatives are variable for different end-capping styles. Their potential applications as optical limiting materials based on the 2PA mechanism in solutions and doped PDMS films were further evaluated. Taken together, this work provides an understanding of their structure-property relationship, and flexible PDMS films as outstanding candidates for practical applications in optical limiting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...