Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Med Chem ; 276: 116681, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39024966

RESUMEN

In our continuing effort devoted at developing agents targeting the EphA2 receptor by means of protein-protein interaction (PPI) inhibitors, we report here the design and synthesis of a new class of l-ß-homotryptophan conjugates of 3-ß-hydroxy-Δ5-cholenic acid bearing a set of arylsulfonyl substituents at the indole nitrogen atom. An extensive structure-activity relationship (SAR) analysis indicates that the presence of a bulky lipophilic moiety at the indole nitrogen is fundamental for improving potency on the EphA2 receptor, while abrogating activity on the EphB1-EphB3 receptor subtypes. A rational exploration, guided by the combined application of an experimental design on σp and π physicochemical descriptors and docking simulations, led to the discovery of UniPR1454, a 1-(4-(trifluoromethyl)phenyl)sulfonyl derivative acting as potent and competitive EphA2 antagonist able to inhibit ephrin-A1 dependent signals and to reduce proliferation of glioblastoma (U251) cell line at micromolar concentration.

2.
J Chem Inf Model ; 63(21): 6900-6911, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37910792

RESUMEN

With the aim of identifying novel antagonists selective for the EphA receptor family, a combined experimental and computational approach was taken to investigate the molecular basis of the recognition between a prototypical Eph-ephrin antagonist (UniPR1447) and two representative receptors of the EphA and EphB subfamilies, namely, EphA2 and EphB2 receptors. The conformational free-energy surface (FES) of the binding state of UniPR1447 within the ligand binding domain of EphA2 and EphB2, reconstructed from molecular dynamics (MD) simulations performed on the microsecond time scale, was exploited to drive the design and synthesis of a novel antagonist selective for EphA2 over the EphB2 receptor. The availability of compounds with this pharmacological profile will help discriminate the importance of these two receptors in the insurgence and progression of cancer.


Asunto(s)
Receptor EphA2 , Receptor EphB2 , Humanos , Ligandos , Simulación de Dinámica Molecular , Unión Proteica , Receptor EphA2/antagonistas & inhibidores , Receptor EphB2/antagonistas & inhibidores
3.
Biochem Pharmacol ; 209: 115452, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36792038

RESUMEN

It is well demonstrated the key role of Eph-ephrin system, specifically of EphA2 receptor, in supporting tumor growth, invasion, metastasis and neovascularization. We previously identified FXR agonists as eligible antagonists of Eph-ephrin system. Herein we characterize new commercially available FXR (Farnesoid X Receptor) agonists as potential Eph ligands including Cilofexor, Nidufexor, Tropifexor, Turofexorate isopropyl and Vonafexor. Our exploration based on molecular modelling investigations and binding assays shows that Cilofexor binds specifically and reversibly to EphA2 receptor with a Ki value in the low micromolar range. Furthermore, Cilofexor interferes with the phosphorylation of EphA2 and the cell retraction and rounding in PC3 prostate cancer cells, both events depending on EphA2 activation. In conclusion, we can confirm that target hopping can be a successful approach to discover new moiety of protein-protein inhibitors.


Asunto(s)
Neoplasias de la Próstata , Receptor EphA2 , Masculino , Humanos , Receptor EphA2/metabolismo , Efrina-A1/metabolismo , Unión Proteica , Efrinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...