Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Pest Manag Sci ; 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39096082

RESUMEN

BACKGROUND: Peach brown rot caused by Monilinia fructicola severely affects the quality and yield of peach, resulting in large economic losses worldwide. Methyl benzimidazole carbamate (MBC) fungicides and sterol demethylation inhibitor (DMI) fungicides are among the most applied chemical classes used to control the disease but resistance in the target pathogen has made them risky choices. Timely monitoring of resistance to these fungicides in orchards could prevent control failure in practice. RESULTS: In the current study, we developed methods based on recombinase polymerase amplification (RPA) and CRISPR/Cas12a systems to detect MBC and DMI resistance based on the E198A mutation in the ß-tubulin (MfTub2) gene and the presence of the Mona element in the upstream region of the MfCYP51, respectively. For MBC resistance, RPA primers were designed that artificially incorporated PAM sites to facilitate the CRISPR/Cas12a reaction. Subsequently, specific tcrRNAs were designed based on the E198A mutation site. For the detection of the Mona element, we designed RPA primers M-DMI-F2/M-DMI-R1 that in combination with crRNA1 detected 'Mona' and distinguished resistant from sensitive strains. CONCLUSION: Both methods exhibited high sensitivity and specificity, requiring only a simple isothermal device to obtain results within 1 h at 37 °C. The FQ-reporter enabled visualization with a handheld UV or white light flashlight. This method was successfully used with purified DNA from lab cultures and crude DNA from symptomatic fruit tissue, highlighting its potential for on-site detection of resistant strains in orchards. © 2024 Society of Chemical Industry.

2.
Avian Pathol ; : 1-7, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38836447

RESUMEN

Infectious laryngotracheitis (ILT) poses a significant threat to the poultry industry, and vaccines play an important role in protection. However, due to the increasing scale of poultry production, there is an urgent need to develop vaccines that are suitable for convenient immunization methods such as spraying. Previous studies have shown that Newcastle disease virus (NDV)-ILT vaccines administered via intranasal and intraocular routes to commercial chickens carrying maternally-derived antibodies (MDAs) are still protective against ILT. In this study, a recombinant NDV (rNDV) was generated to express infectious laryngotracheitis virus (ILTV) glycoprotein B (gB), named rLS-gB, based on a full-length cDNA clone of the LaSota strain. The protective effect of different doses of rLS-gB administered by spray vaccination to commercial chickens at 1 d of age (doa) was evaluated. The chickens were exposed to 160-µm aerosol particles for 10 min for spray vaccination, and no adverse reactions were observed after vaccination. Despite the presence of anti-NDV MDAs and anti-ILTV MDAs in chickens, the ILTV- and NDV-specific antibody titres were significantly greater in the vaccinated groups than in the unvaccinated group. After challenge with a virulent ILTV strain, no clinical signs were observed in the 107 EID50/ml group compared to the other groups. Furthermore, vaccination with 107 EID50/ml rLS-gB significantly reduced the ILTV viral load and ameliorated gross and microscopic lesions in the trachea of chickens. Overall, these results suggested that rLS-gB is a safe and efficient candidate spray vaccine for ILT and is especially suitable for scaled chicken farms.

3.
Mitochondrial DNA B Resour ; 9(6): 802-807, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38895507

RESUMEN

Meconopsis torquata Prain 1906, a national second-class rare and endangered plant, is reported here for the first time for its complete chloroplast genome. The genome is 153,290 bp in length, comprising a large single-copy region (LSC, 83,918 bp), a small single-copy region (SSC, 17,740 bp), and two inverted repeat sequences (IRa and IRb, each 25,816 bp). The overall GC content is 38.7%, with the IR region having the highest content (43.1%). The genome is annotated with 112 unique genes, including 4 rRNA genes, 29 tRNA genes, and 79 protein-coding genes. Analysis of codon usage bias reveals that codons ending in A/T account for 96.7% of those with a Relative Synonymous Codon Usage (RSCU) value above 1. This predominance of A/T-ending codons might be indicative of M. torquata adaptation to high-altitude environments. Phylogenetic analysis reveals a close kinship between M. torquata and M. pinnatifolia and M. paniculata, indicating that the ancestral groups of these species might have a complex evolutionary history. This study uncovers the genetic characteristics and adaptive evolution of M. torquata, offering a new perspective in understanding the phylogenetic relationships within the genus. The findings not only provide a solid theoretical foundation for the conservation and sustainable use of this rare and endangered species but also offer significant scientific support for the conservation of biodiversity.

4.
Int J Food Microbiol ; 410: 110486, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37992553

RESUMEN

Listeria monocytogenes is a facultative anaerobe which can cause a severe food-borne infection known as listeriosis. L. monocytogenes is capable of utilizing various nutrient sources including rhamnose, a naturally occurring deoxy sugar abundant in foods. L. monocytogenes can degrade rhamnose into lactate, acetate and 1,2-propanediol. Our previous study showed that addition of vitamin B12 stimulated anaerobic growth of L. monocytogenes on rhamnose due to the activation of bacterial microcompartments for 1,2-propanediol utilization (pdu BMC) with concomitant production of propionate and propanol. Notably, anaerobic 1,2-propanediol metabolism has been linked to virulence of enteric pathogens including Salmonella spp. and L. monocytogenes. In this study we investigated the impact of B12 and BMC activation on i) aerobic and anerobic growth of L. monocytogenes on rhamnose and ii) the level of virulence. We observed B12-induced pdu BMC activation and growth stimulation only in anaerobically grown cells. Comparative Caco-2 virulence assays showed that these pdu BMC-induced cells have significantly higher translocation efficiency compared to non-induced cells (anaerobic growth without B12; aerobic growth with or without B12), while adhesion and invasion capacity is similar for all cells. Comparative proteome analysis showed specific and overlapping responses linked to metabolic shifts, activation of stress defense proteins and virulence factors, with RNA polymerase sigma factor SigL, teichoic acid export ATP-binding protein TagH, DNA repair and protection proteins, RadA and DPS, and glutathione synthase GshAB, previously linked to activation of virulence response in L. monocytogenes, uniquely upregulated in anaerobically rhamnose grown pdu-induced cells. Our results shed light on possible effects of B12 on L. monocytogenes competitive fitness and virulence activation when utilizing rhamnose in anaerobic conditions encountered during transmission and the human intestine.


Asunto(s)
Listeria monocytogenes , Listeriosis , Humanos , Ramnosa/metabolismo , Células CACO-2 , Propilenglicol/metabolismo , Virulencia/genética , Vitamina B 12/farmacología , Vitamina B 12/metabolismo , Listeriosis/microbiología , Vitaminas/metabolismo , Proteínas Bacterianas/genética
5.
Vaccines (Basel) ; 11(12)2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38140173

RESUMEN

Novel goose parvovirus (NGPV), a genetic variant of goose parvovirus, has been spreading throughout China since 2015 and mainly infects ducklings with the symptoms of growth retardation, beak atrophy, and protruding tongue, leading to huge economic losses every year. A safe and effective vaccine is urgently needed to control NGPV infection. In this study, virus-like particles (VLPs) of NPGV were assembled and evaluated for their immunogenicity. The VP2 protein of NGPV was expressed in Spodoptera frugiperda insect cells using baculovirus as vector. The VP2 protein was efficiently expressed in the nucleus of insect cells, and the particles with a circular or hexagonal shape and a diameter of approximately 30 nm, similar to the NGPV virion, were observed using transmission electron microscopy (TEM). The purified particles were confirmed to be composed of VP2 using western blot and TEM, indicating that the VLPs of NGPV were successfully assembled. Furthermore, the immunogenicity of the VLPs of NGPV was evaluated in Cherry Valley ducks. The level of NGPV serum antibodies increased significantly at 1-4 weeks post-immunization. No clinical symptoms or deaths of ducks occurred in all groups after being challenged with NGPV at 4 weeks post-immunization. There was no viral shedding in the immunized group. However, viral shedding was detected at 3-7 days post-challenge in the non-immunized group. Moreover, VLPs can protect ducks from histopathological lesions caused by NGPV and significantly reduce viral load in tissue at 5 days post-challenge. Based on these findings, NGPV VLPs are promising candidates for vaccines against NGPV.

6.
J Eye Mov Res ; 16(1)2023.
Artículo en Inglés | MEDLINE | ID: mdl-38022900

RESUMEN

Gaze input, i.e., information input via eye of users, represents a promising method for contact- free interaction in human-machine systems. In this paper, we present the GazeVending interface (GaVe), which lets users control actions on a display with their eyes. The interface works on a regular webcam, available on most of today's laptops, and only requires a short one-point calibration before use. GaVe is designed in a hierarchical structure, presenting broad item cluster to users first and subsequently guiding them through another selection round, which allows the presentation of a large number of items. Cluster/item selection in GaVe is based on the dwell time, i.e., the time duration that users look at a given Cluster/ item. A user study (N=22) was conducted to test optimal dwell time thresholds and comfortable human-to-display distances. Users' perception of the system, as well as error rates and task completion time were registered. We found that all participants were able to quickly understand and know how to interact with the interface, and showed good performance, selecting a target item within a group of 12 items in 6.76 seconds on average. We provide design guidelines for GaVe and discuss the potentials of the system.

7.
J Geriatr Cardiol ; 20(6): 459-468, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37416516

RESUMEN

OBJECTIVE: To evaluate the safety and efficacy of catheter-directed thrombolysis (CDT) versus systemic thrombolysis (ST) in the treatment of pulmonary embolism (PE). METHODS: The Cochrane Library, PubMed, and Embase databases were searched to collect the literature on the comparison of the results of CDT and ST in the treatment of PE from the beginning of their records to May 2020, and meta-analysis was performed by STATA software (version 15.1). Using standardized data-collection forms, the authors screened the studies and independently extracted data, and assessed the quality of the studies using the Newcastle-Ottawa Scale for cohort studies. Cohort studies that examined the following results were included in the current study: in-hospital mortality, all-cause bleeding rate, gastrointestinal bleeding rate, intracranial hemorrhage rate, the incidence of shock, and hospital length of stay. RESULTS: A total of eight articles, with 13,242 participants, involving 3962 participants in the CDT group and 9280 participants in the ST group were included. CDT compared with ST in the treatment of PE can significantly affect in-hospital mortality rate [odds ratio (OR) = 0.41, 95% CI: 0.30-0.56, P < 0.05], all-cause bleeding rate (OR = 1.20, 95% CI: 1.04-1.39, P = 0.012), gastrointestinal bleeding rate (OR = 1.43, 95% CI: 1.13-1.81, P = 0.003), the incidence of shock (OR = 0.46, 95% CI: 0.37-0.57, P < 0.05), and hospital length of stay [standard mean difference (SMD) = 0.16, 95% CI: 0.07-0.25, P < 0.05]. However, there was no significant effect on intracranial hemorrhage rate in patients with PE (OR = 0.70, 95% CI: 0.47-1.03, P = 0.070). CONCLUSIONS: CDT is a viable alternative to ST in the treatment of PE, as it can significantly reduce in-hospital mortality rate, all-cause bleeding rate, gastrointestinal bleeding rate, and incidence of shock. However, CDT may prolong hospital length of stay to a certain extent. Further research is needed to evaluate the safety and efficacy of CDT and ST in the treatment of acute PE and other clinical outcomes.

8.
Arch Virol ; 168(8): 203, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37418014

RESUMEN

The hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) is a multifunctional protein with receptor recognition ability that plays an important role in the infection of cells by NDV. An alignment of NDV HN protein sequences of different genotypes showed that vaccine strains of NDV, such as the LaSota strain, generally have an HN protein of 577 amino acids. In comparison, the HN protein of the V4 strain has 616 amino acids, with 39 more amino acids at the C-terminus. In this study, we generated a recombinant NDV (rNDV) with a 39-amino-acid truncation at the HN C-terminus based on the full-length cDNA clone of the V4 strain. This rNDV, named rV4-HN-tr, displayed thermostability similar to that of the parental V4 strain. However, growth kinetics and pathogenicity analysis suggested that rV4-HN-tr is more virulent than the V4 strain. Notably, the C-terminus of HN affected the ability of the virus to adsorb onto cells. Structural predictions further suggested that the C-terminus of HN may obstruct the sialic acid binding site. Immunization of chickens with rV4-HN-tr induced a 3.5-fold higher level of NDV-specific antibodies than that obtained with the V4 strain and provided 100% immune protection against NDV challenge. Our study suggests that rV4-HN-tr is a thermostable, safe, and highly efficient vaccine candidate against Newcastle disease.


Asunto(s)
Enfermedad de Newcastle , Vacunas Virales , Animales , Virus de la Enfermedad de Newcastle , Pollos , Virulencia , Neuraminidasa/genética , Hemaglutininas/genética , Proteína HN/genética , Proteína HN/metabolismo , Vacunas Virales/genética , Anticuerpos Antivirales , Aminoácidos
10.
Front Neurorobot ; 17: 1179033, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37342391

RESUMEN

Cooperative autonomous exploration is a challenging task for multi-robot systems, which can cover larger areas in a shorter time or path length. Using multiple mobile robots for cooperative exploration of unknown environments can be more efficient than a single robot, but there are also many difficulties in multi-robot cooperative autonomous exploration. The key to successful multi-robot cooperative autonomous exploration is effective coordination between the robots. This paper designs a multi-robot cooperative autonomous exploration strategy for exploration tasks. Additionally, considering the fact that mobile robots are inevitably subject to failure in harsh conditions, we propose a self-healing cooperative autonomous exploration method that can recover from robot failures.

11.
J Virol ; 97(5): e0032423, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37042750

RESUMEN

In ovo vaccination is an attractive immunization approach for chickens. However, most live Newcastle disease virus (NDV) vaccine strains used safely after hatching are unsafe as in ovo vaccines due to their high pathogenicity for chicken embryos. The mechanism for viral pathogenicity in chicken embryos is poorly understood. Our previous studies reported that NDV strain TS09-C was a safe in ovo vaccine, and the F protein cleavage site (FCS) containing three basic amino acids (3B-FCS) was the crucial determinant of the attenuation of TS09-C in chicken embryos. Here, five trypsin-like proteases that activated NDV in chicken embryos were identified. The F protein with 3B-FCS was sensitive to the proteases Tmprss4, Tmprss9, and F7, was present in fewer tissue cells of chicken embryos, which limited the viral tropism, and was responsible for the attenuation of NDV with 3B-FCS, while the F protein with FCS containing two basic amino acids could be cleaved not only by Tmprss4, Tmprss9, and F7 but also by Prss23 and Cfd, was present in most tissue cells, and thereby was responsible for broad tissue tropism and high pathogenicity of virus in chicken embryos. Furthermore, when mixed with the protease inhibitors aprotinin and camostat, NDV with 2B-FCS exhibited greatly weakened pathogenicity in chicken embryos. Thus, our results extend the understanding of the molecular mechanism of NDV pathogenicity in chicken embryos and provide a novel molecular target for the rational design of in ovo vaccines, ensuring uniform and effective vaccine delivery and earlier induction of immune protection by the time of hatching. IMPORTANCE As an attractive immunization approach for chickens, in ovo vaccination can induce a considerable degree of protection by the time of hatching, provide support in closing the window in which birds are susceptible to infection, facilitate fast and uniform vaccine delivery, and reduce labor costs by the use of mechanized injectors. The commercial live Newcastle disease virus (NDV) vaccine strains are not safe for in ovo vaccination and cause the death of chicken embryos. The mechanism for viral pathogenicity in chicken embryos is poorly understood. In the present study, we identified five trypsin-like proteases that activate NDV in chicken embryos and elucidated their roles in the tissue tropism and pathogenicity of NDV used as in ovo vaccine. Finally, we revealed the molecular basis for the pathogenicity of NDV in chicken embryos and provided a novel strategy for the rational design of in ovo ND vaccines.


Asunto(s)
Enfermedad de Newcastle , Péptido Hidrolasas , Enfermedades de las Aves de Corral , Vacunas Virales , Animales , Embrión de Pollo , Anticuerpos Antivirales , Pollos , Enfermedad de Newcastle/inmunología , Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/fisiología , Péptido Hidrolasas/metabolismo , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/virología , Vacunas Atenuadas , Vacunas Virales/administración & dosificación , Virulencia
12.
Viruses ; 15(2)2023 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-36851714

RESUMEN

Infectious laryngotracheitis (ILT) and Newcastle disease (ND) are two important avian diseases that have caused huge economic losses to the poultry industry worldwide. Newcastle disease virus (NDV) has been used as a vector in the development of vaccines and gene delivery. In the present study, we generated a thermostable recombinant NDV (rNDV) expressing the glycoprotein gB (gB) of infectious laryngotracheitis virus (ITLV) based on the full-length cDNA clone of the thermostable TS09-C strain. This thermostable rNDV, named rTS-gB, displayed similar thermostability, growth kinetics, and pathogenicity compared with the parental TS09-C virus. The immunization data showed that rTS-gB induced effective ILTV- and NDV-specific antibody responses and conferred immunization protection against ILTV challenge in chickens. The efficacy of rTS-gB in alleviating clinical signs was similar to that of the commercial attenuated ILTV K317 strain. Furthermore, rTS-gB could significantly reduce viral shedding in cloacal and tracheal samples. Our study suggested that the rNDV strain rTS-gB is a thermostable, safe, and highly efficient vaccine candidate against ILT and ND.


Asunto(s)
Enfermedades de las Aves , Herpesvirus Gallináceo 1 , Enfermedad de Newcastle , Animales , Virus de la Enfermedad de Newcastle/genética , Pollos , Enfermedad de Newcastle/prevención & control , Anticuerpos Antivirales , Herpesvirus Gallináceo 1/genética
13.
PLoS Pathog ; 18(6): e1010564, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35679257

RESUMEN

The development of thermostable vaccines can relieve the bottleneck of existing vaccines caused by thermal instability and subsequent poor efficacy, which is one of the predominant reasons for the millions of deaths caused by vaccine-preventable diseases. Research into the mechanism of viral thermostability may provide strategies for developing thermostable vaccines. Using Newcastle disease virus (NDV) as model, we identified the negative surface charge of attachment glycoprotein as a novel determinant of viral thermostability. It prevented the temperature-induced aggregation of glycoprotein and subsequent detachment from virion surface. Then structural stability of virion surface was improved and virus could bind to and infect cells efficiently after heat-treatment. Employing the approach of surface charge engineering, thermal stability of NDV and influenza A virus (IAV) vaccines was successfully improved. The increase in the level of vaccine thermal stability was determined by the value-added in the negative surface charge of the attachment glycoprotein. The engineered live and inactivated vaccines could be used efficiently after storage at 37°C for at least 10 and 60 days, respectively. Thus, our results revealed a novel surface-charge-mediated link between HN protein and NDV thermostability, which could be used to design thermal stable NDV and IAV vaccines rationally.


Asunto(s)
Enfermedad de Newcastle , Vacunas Virales , Animales , Pollos/metabolismo , Glicoproteínas , Proteína HN/metabolismo , Enfermedad de Newcastle/prevención & control , Virus de la Enfermedad de Newcastle/metabolismo
14.
J Colloid Interface Sci ; 622: 625-636, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35533478

RESUMEN

Carbonaceous-magnetic composites are the most appealing candidates for electromagnetic wave absorption, and creating hollow interiors and nanopores in the composites is commonly recognized as an essential strategy to reinforce their overall performances. Herein, we propose a spatial confinement strategy mediated by Co2(OH)2CO3 nanosheet assemblies for achieving highly dispersed Co nanoparticles into hollow porous N-doped carbon shells (HP-Co@NCS). Systematic multi-technique characterizations indicate that the Co2(OH)2CO3 nanosheet assemblies simultaneously play a trifunctional role during the synthesis, including Co source, template of the hollow interior cavities, and micro-/mesopore porogen. The chemical composition can be modulated by simply varying the ratio of Co2(OH)2CO3 and carbon source (dopamine). The optimized HP-Co@NCS absorber exhibits a well-defined hollow structure and unprecedented high porosity (specific surface area of 742 m2 g-1) even with a high metallic Co content of 35.8 wt%. These profitable structural characteristics can facilitate incident EM waves penetrating the absorber's interior and promoting multiple reflections and scattering. Therefore, the HP-Co@NCS absorber exhibits efficient microwave absorption ability with a minimum reflection loss of -39.0 dB at a thin thickness of 2.5 mm and an effective absorption bandwidth up to 5.5 GHz (12.5-18.0 GHz) at a thin thickness of 2.0 mm. This work provides a new methodology to design advanced carbonaceous-magnetic composite materials with hollow porous structures for microwave absorption.

15.
Front Microbiol ; 13: 812289, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35387070

RESUMEN

In ovo vaccination is an attractive immunization strategy for the poultry industry. However, although most live Newcastle disease virus (NDV) vaccine strains, such as LaSota and V4, can be used after hatching, they are pathogenic to chicken embryos when administered in ovo. We have previously reported that NDV strain TS09-C is a safe in ovo vaccine in specific-pathogen-free and commercial chicken embryos because it is attenuated in chicken embryos. However, the molecular basis of its attenuation is poorly understood. In this study, we firstly evaluated the safety of chimeric NDV strains after exchanging genes between strains TS09-C and LaSota as in ovo vaccines, and demonstrated that the attenuation of NDV in chicken embryos was dependent upon the origin of the fusion (F) protein. Next, by comparing the F protein sequences of TS09-C strain with those of LaSota and V4 strain, the R115 in cleavage site and F379 were found to be unique to TS09-C strain. The mutant viruses were generated by substituting one or two amino acids at position 115 and 379 in the F protein, and their safety as in ovo vaccine was evaluated. Mutation in residue 379 did not affect the viral embryonic pathogenicity. While the mutant virus rTS-2B (R115G mutation based on the backbone of TS09-C strain) with two basic amino acids in F cleavage site, was pathogenic to chicken embryos and similar with rLaSota in its tissue tropism, differing markedly from rTS09-C with three basic amino acids in F cleavage site. Together, these findings indicate that the F protein cleavage site containing three basic amino acids is the crucial determinant of the attenuation of TS09-C in chicken embryos. This study extends our understanding of the pathogenicity of NDV in chicken embryos and should expedite the development of in ovo vaccines against NDV.

16.
ACS Appl Mater Interfaces ; 14(13): 15370-15380, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35319194

RESUMEN

We present a simple, effective, and controllable method to uniformly thin down the thickness of as-exfoliated two-dimensional Bi2O2Se nanoflakes using Ar+ plasma treatment. Atomic force microscopy (AFM) images and Raman spectra indicate that the surface morphology and crystalline quality of etched Bi2O2Se nanoflakes remain almost unaffected. X-ray photoelectron spectra (XPS) indicate that the O and Se vacancies created during Ar+ plasma etching on the top surface of Bi2O2Se nanoflakes are passivated by forming an ultrathin oxide layer with UV O3 treatment. Moreover, a bottom-gate Bi2O2Se-based field-effect transistor (FET) was constructed to research the effect of thicknesses and defects on electronic properties. The on-current/off-current (Ion/Ioff) ratio of the Bi2O2Se FET increases with decreasing Bi2O2Se thickness and is further improved by UV O3 treatment. Eventually, the thickness-controlled Bi2O2Se FET achieves a high Ion/Ioff ratio of 6.0 × 104 and a high field-effect mobility of 5.7 cm2 V-1 s-1. Specifically, the variation trend of the Ion/Ioff ratio and the electronic transport properties for the bottom-gate Bi2O2Se-based FET are well described by a parallel resistor model (including bulk, channel, and defect resistance). Furthermore, the Ids-Vgs hysteresis and its inversion with UV irradiation were observed. The pulsed gate and drain voltage measurements were used to extract trap time constants and analyze the formation mechanism of different hysteresis. Before UV irradiation, the origin of clockwise hysteresis is attributed to the charge trapping/detrapping of defects at the Bi2O2Se/SiO2 interface and in the Bi2O2Se bulk. After UV irradiation, the large anticlockwise hysteresis is mainly due to the tunneling between deep-level oxygen defects in SiO2 and p++-Si gate, which implies the potential in nonvolatile memory.

17.
Mitochondrial DNA B Resour ; 7(1): 60-61, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34926824

RESUMEN

Ranunculus yunnanensis Franch is endemic in Yunnan and Sichuan Provinces, southwestern China. Here, we report the complete chloroplast (cp) genome of R. yunnanensis. The chloroplast genome is 156,050 bp in length, with 111 encoded genes, including 78 protein-coding genes, 29 tRNA genes, and four rRNA genes. Maximum-likelihood phylogenetic reconstruction using the existing data of Ranunculus shows that R. yunnanensis is revealed at the basal position of the marsh buttercup clade. This result has improved a better understanding of the internal relationship of the Ranunculus.

18.
Mitochondrial DNA B Resour ; 6(10): 2955-2956, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34553056

RESUMEN

Beesia deltophylla is an endemic and rare species only distributed in Xizang, China. The chloroplast genome of B. deltophylla is 157,397 bp in length, with 112 encoded genes including 78 protein-coding genes, 30 tRNA genes and 4 rRNA genes. Phylogenetic reconstruction has confirmed the placement of B. deltophylla as sister to B. calthifolia. These two species formed a clade closely to a Japan endemic species Anemonopsis macrophylla.

19.
mSphere ; 6(4): e0043421, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34287006

RESUMEN

The foodborne pathogen Listeria monocytogenes can form proteinaceous organelles called bacterial microcompartments (BMCs) that optimize the utilization of substrates, such as 1,2-propanediol, and confer an anaerobic growth advantage. Rhamnose is a deoxyhexose sugar abundant in a range of environments, including the human intestine, and can be degraded in anaerobic conditions into 1,2-propanediol, next to acetate and lactate. Rhamnose-derived 1,2-propanediol was found to link with BMCs in some human pathogens such as Salmonella enterica, but the involvement of BMCs in rhamnose metabolism and potential physiological effects on L. monocytogenes are still unknown. In this study, we first test the effect of rhamnose uptake and utilization on anaerobic growth of L. monocytogenes EGDe without or with added vitamin B12, followed by metabolic analysis. We show that vitamin B12-dependent activation of pdu stimulates metabolism and anaerobic growth of L. monocytogenes EGDe on rhamnose via 1,2-propanediol degradation into 1-propanol and propionate. Transmission electron microscopy of pdu-induced cells shows that BMCs are formed, and additional proteomics experiments confirm expression of pdu BMC shell proteins and enzymes. Finally, we discuss the physiological effects and energy efficiency of L. monocytogenes pdu BMC-driven anaerobic rhamnose metabolism and the impact on competitive fitness in environments such as the human intestine. IMPORTANCE Listeria monocytogenes is a foodborne pathogen causing severe illness and, as such, it is crucial to understand the molecular mechanisms contributing to its survival strategy and pathogenicity. Rhamnose is a deoxyhexose sugar abundant in a range of environments, including the human intestine, and can be degraded in anaerobic conditions into 1,2-propanediol. In our previous study, the utilization of 1,2-propanediol (pdu) in L. monocytogenes was proved to be metabolized in bacterial microcompartments (BMCs), which are self-assembling subcellular proteinaceous structures and analogs of eukaryotic organelles. Here, we show that the vitamin B12-dependent activation of pdu stimulates metabolism and anaerobic growth of L. monocytogenes EGDe on rhamnose via BMC-dependent 1,2-propanediol utilization. Combined with metabolic and proteomics analysis, our discussion on the physiological effects and energy efficiency of BMC-driven rhamnose metabolism shed new light to understand the impact on L. monocytogenes competitive fitness in ecosystems such as the human intestine.


Asunto(s)
Listeria monocytogenes/crecimiento & desarrollo , Listeria monocytogenes/metabolismo , Glicoles de Propileno/metabolismo , Ramnosa/metabolismo , Vitamina B 12/metabolismo , Anaerobiosis , Proteínas Bacterianas/genética , Humanos , Intestinos/microbiología , Intestinos/fisiología , Listeria monocytogenes/efectos de los fármacos , Listeria monocytogenes/genética , Redes y Vías Metabólicas/efectos de los fármacos , Proteómica/métodos , Vitamina B 12/biosíntesis , Vitamina B 12/farmacología
20.
Front Microbiol ; 12: 679827, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054787

RESUMEN

Bacterial microcompartments (BMCs) are proteinaceous prokaryotic organelles that enable the utilization of substrates such as 1,2-propanediol and ethanolamine. BMCs are mostly linked to the survival of particular pathogenic bacteria by providing a growth advantage through utilization of 1,2-propanediol and ethanolamine which are abundantly present in the human gut. Although a 1,2-propanediol utilization cluster was found in the probiotic bacterium Propionibacterium freudenreichii, BMC-mediated metabolism of 1,2-propanediol has not been demonstrated experimentally in P. freudenreichii. In this study we show that P. freudenreichii DSM 20271 metabolizes 1,2-propanediol in anaerobic conditions to propionate and 1-propanol. Furthermore, 1,2-propanediol induced the formation of BMCs, which were visualized by transmission electron microscopy and resembled BMCs found in other bacteria. Proteomic analysis of 1,2-propanediol grown cells compared to L-lactate grown cells showed significant upregulation of proteins involved in propanediol-utilization (pdu-cluster), DNA repair mechanisms and BMC shell proteins while proteins involved in oxidative phosphorylation were down-regulated. 1,2-Propanediol utilizing cells actively produced vitamin B12 (cobalamin) in similar amounts as cells growing on L-lactate. The ability to metabolize 1,2-propanediol may have implications for human gut colonization and modulation, and can potentially aid in delivering propionate and vitamin B12 in situ.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...