Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Chem X ; 22: 101481, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38840724

RESUMEN

Rapid and accurate determination of pigment content is important for quality inspection of spinach leaves during storage. This study aimed to use hyperspectral imaging at two spectral ranges (visible/near-infrared, VNIR: 400-1000 nm; NIR: 900-1700 nm) to simultaneously determine the pigment (chlorophyll a, chlorophyll b, total chlorophyll, and carotenoids) content in spinach stored at different durations and conditions (unpackaged and packaged). Partial least squares (PLS), back propagation neural network (BPNN) and convolutional neural network (CNN) were used to establish single-task and multi-task regression models. Single-task CNN (STCNN) models and multi-task CNN (MTCNN) models obtained better performances than the other models. The models using VNIR spectra were superior to those using NIR spectra. The overall results indicated that hyperspectral imaging with multi-task learning could predict the quality attributes of spinach simultaneously for spinach quality inspection under various storage conditions. This research will guide food quality inspection by simultaneously inspecting multiple quality attributes.

2.
Plant Phenomics ; 5: 0124, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38239738

RESUMEN

Heavy metal pollution is becoming a prominent stress on plants. Plants contaminated with heavy metals undergo changes in external morphology and internal structure, and heavy metals can accumulate through the food chain, threatening human health. Detecting heavy metal stress on plants quickly, accurately, and nondestructively helps to achieve precise management of plant growth status and accelerate the breeding of heavy metal-resistant plant varieties. Traditional chemical reagent-based detection methods are laborious, destructive, time-consuming, and costly. The internal and external structures of plants can be altered by heavy metal contamination, which can lead to changes in plants' absorption and reflection of light. Visible/near-infrared (V/NIR) spectroscopy can obtain plant spectral information, and hyperspectral imaging (HSI) can obtain spectral and spatial information in simple, speedy, and nondestructive ways. These 2 technologies have been the most widely used high-throughput phenotyping technologies of plants. This review summarizes the application of V/NIR spectroscopy and HSI in plant heavy metal stress phenotype analysis as well as introduces the method of combining spectroscopy with machine learning approaches for high-throughput phenotyping of plant heavy metal stress, including unstressed and stressed identification, stress types identification, stress degrees identification, and heavy metal content estimation. The vegetation indexes, full-range spectra, and feature bands identified by different plant heavy metal stress phenotyping methods are reviewed. The advantages, limitations, challenges, and prospects of V/NIR spectroscopy and HSI for plant heavy metal stress phenotyping are discussed. Further studies are needed to promote the research and application of V/NIR spectroscopy and HSI for plant heavy metal stress phenotyping.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...