Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Heliyon ; 10(14): e34611, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39114008

RESUMEN

Zolbetuximab (ZOL) is a groundbreaking monoclonal antibody targeting CLDN 18.2, a cancer cell surface protein. It is a first-in-class therapy for gastric and gastroesophageal junction adenocarcinoma. However, there is currently any immunoassay available for bioanalysis of ZOL, hindering its pharmacokinetic studies, therapeutic monitoring, and safety profile refinement. To address this gap, this study presents the development and validation of a novel highly sensitive inner filter effect-based fluorescence immunoassay (IFE-FIA) with quantum dots (QDs) as a probe. This assay enables the quantitative determination of ZOL in plasma samples. The assay involved non-competitive capturing of ZOL from the samples using a specific antigen (CLDN 18.2 protein) immobilized on assay plate microwells. A horseradish peroxidase (HRP)-labelled anti-human IgG was used to measure the immune complex. The assay's detection system relies on the formation of a light-absorbing colored product through an HRP-catalyzed oxidative reaction with the substrate 3,3',5,5'-tetramethylbenzidine. This light absorption efficiently quenched the fluorescence of QDs via the IFE. The measured fluorescence signals corresponded to the concentrations of ZOL in the samples. The conditions of the IFE-FIA and its detection system were refined, and the optimum procedures were established. Following the guidelines of immunoassay validation for bioanalysis, the assay was validated, and all the validation criteria were acceptable. The assay demonstrates high sensitivity, accurately quantifying ZOL at concentrations as low as 10 ng/mL in plasma samples, with acceptable precision. Importantly, it avoids interferences from endogenous substances and plasma matrix. The recoveries in spiked human plasma ranged from 96.8 % to 104.5 %, with relative standard deviations of 4.1 %-6.5 %. The proposed IFE-FIA represents a valuable tool for quantifying ZOL in clinical settings, enabling assessment of its pharmacokinetics, therapeutic drug monitoring, and safety profile refinement.

2.
J Agric Food Chem ; 72(32): 18171-18180, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39092884

RESUMEN

Conventional lateral flow immunoassay (LFIA) usually suffers from poor antimatrix interference, unsatisfactory sensitivity, and lack of quantitative ability for target analyte detection in food matrices. In response to these limits, here, multifunctional nanomaterial ZnFe2O4 nanoparticles (ZFOs) were developed and integrated into LFIA for powerful magnetic separation/enrichment and colorimetric/photothermal target sensing. Under optimum conditions, the detection for clenbuterol (CL) with magnetic enrichment achieves 9-fold higher sensitivity compared to that without enrichment and 162-fold higher sensitivity compared to that based on traditional colloidal golds. Attributing the improved performances of ZFOs, CL can be detected at ultralow levels in pork and milk with 10 min of immunoreaction time. The vLODs were 0.01 µg kg-1 for two modes, and the cutoff values of CL were about 5 and 3 µg kg-1, respectively. More importantly, the enrichment ZFO-mediated LFIA (ZE-LFIA) exhibits a similar limit of detection (LOD) in both buffer solution and food matrix, demonstrating a universal resistance to the food matrix. The multitudinous performance merits of this ZE-LFIA with high sensitivity, matrix tolerance, accuracy, and specificity have ensured a broad application potential for target detection of clenbuterol and can serve as an experience for other veterinary drug residues' detection.


Asunto(s)
Clenbuterol , Contaminación de Alimentos , Límite de Detección , Leche , Animales , Inmunoensayo/métodos , Inmunoensayo/instrumentación , Porcinos , Clenbuterol/análisis , Contaminación de Alimentos/análisis , Leche/química
3.
Inorg Chem ; 63(31): 14630-14640, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39033405

RESUMEN

Recently, metal-organic frameworks (MOFs) have attracted great interest in energy storage areas. However, the poor structural stability of MOFs derived from weak coordination bonds limits their applications. Here, quadruple hydrogen bonds (H-bonds) were introduced onto the MOFs to enhance their structural stability. Cross-linked networks could be formed between molecules owing to multiple H-bonds, strengthening the framework stability. Moreover, the dynamic reversibility of H-bonds could endow MOFs with self-healing ability. Furthermore, due to lower binding energy compared to coordination bonds, H-bonds break preferentially when subjected to internal stress, thus protecting the MOFs. Consequently, the as-prepared self-healing hybrid (SHH-Cu-MOF@Ti3C2TX) exhibited high capacitance retention (89.4%) after 5000 cycles at 1 A g-1, while that hybrid without dynamic H-bonds (H-Cu-MOF@Ti3C2TX) presented a 79.9% retention, delivering an enhancement in cycling stability. Moreover, an asymmetric supercapacitor (ASC) was fabricated by employing SHH-Cu-MOF@Ti3C2TX and activated carbon (AC) as the electrodes. The ASC delivered a specific capacitance (47.4 F g-1 at 1 A g-1), an energy density (16.9 Wh kg-1), and a power density (800 W kg-1) as well as good rate ability (retains 81% of its initial capacitance from 0.2 A g-1 to 5 A g-1).

4.
Biosens Bioelectron ; 262: 116556, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38996596

RESUMEN

The multiple-readout capability of multimodal detection enhances the flexibility, reliability, and accuracy of lateral flow immunoassay (LFIA). The conjugation of two different metal-organic frameworks (MOFs) as a new-generation composite material offers extraordinary opportunities for developing multimodal LFIA. It is anticipated to compensate limitations of traditional single colorimetric signal LFIA and improve the analysis performance. Herein, an ultra-bright fluorescent AIE-MOF was proposed and coupled with an in-situ growth of Prussian blue (PB) nanoparticles strategy to obtain a novel multimodal signal tracer (AIE-MOF@PB). Thereafter, it was successfully applied to develop the multimodal LFIA platform for the detection of nitrofurazone metabolites. The synergy of AIE-MOF and PB endows AIE-MOF@PB with superb water dispersibility, robust fluorescence emission, brilliant colorimetric signal, marvelous photothermal conversion, and enhanced antibody coupling efficiency, all of which facilitate a highly sensitive triple-readout LFIA platform. The detection sensitivity improved by at least 5-fold compared with the colloidal gold-based LFIA. This work not only inspires the rational design of aggregation-induced emission luminogens (AIEgen)-based complex materials but also highlights the promising potential in flexible point-of-care applications.


Asunto(s)
Técnicas Biosensibles , Límite de Detección , Estructuras Metalorgánicas , Nitrofurazona , Estructuras Metalorgánicas/química , Inmunoensayo/métodos , Inmunoensayo/instrumentación , Técnicas Biosensibles/métodos , Nitrofurazona/análisis , Nitrofurazona/química , Humanos , Ferrocianuros/química , Colorimetría/métodos , Colorantes Fluorescentes/química
5.
Anal Chem ; 96(26): 10714-10723, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38913030

RESUMEN

Excessive intake of estrogen poses significant health risks to the human body; hence, there is a necessity to develop rapid detection methods to monitor its levels of addition. Gold nanoparticles (AuNPs), commonly utilized as colorimetric signal labels, find extensive application in lateral flow immunoassay (LFIA). However, the detection sensitivity of traditional AuNPs-LFIA is typically constrained by low molar extinction coefficients and reliance on a single signal. Herein, in this work, unique spark-type AuCuPt nanoflowers modified with tannic acid (AuCuPt@TA) were precisely designed by reasonable layer-by-layer element composition and green modification. The obtained AuCuPt displays robust broadband absorption spanning the visible to near-infrared spectrum, showcasing a notable molar extinction coefficient of 2.38 × 1012 M-1 cm-1 and a photothermal conversion efficiency of 48.5%. Based on this, selecting estriol (E3) as a model analyte, colorimetric/photothermal dual-signal LFIA (CLFIA and PLFIA) was developed. Limits of detection (LOD) of the CLFIA and PLFIA were achieved at 0.033 ng mL-1 and 0.021 ng mL-1, respectively, which represent a 9.3- and 14.6-fold improvement compared to the visual LOD of AuNPs-LFIA. Moreover, the application feasibility of the immunoassay was further evaluated in the milk and pork with satisfactory recoveries ranging from 86.21% to 117.91%. Thus, this work has enhanced the performance of LFIA for E3 detection and exhibited enormous potential for other sensing platform construction.


Asunto(s)
Aleaciones , Estriol , Oro , Nanopartículas del Metal , Inmunoensayo/métodos , Nanopartículas del Metal/química , Oro/química , Estriol/análisis , Aleaciones/química , Animales , Colorimetría , Límite de Detección , Taninos/química , Taninos/análisis
6.
Nat Commun ; 15(1): 4869, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849328

RESUMEN

The regulation of topological structure of covalent adaptable networks (CANs) remains a challenge for epoxy CANs. Here, we report a strategy to develop strong and tough epoxy supramolecular thermosets with rapid reprocessability and room-temperature closed-loop recyclability. These thermosets were constructed from vanillin-based hyperbranched epoxy resin (VanEHBP) through the introduction of intermolecular hydrogen bonds and dual dynamic covalent bonds, as well as the formation of intramolecular and intermolecular cavities. The supramolecular structures confer remarkable energy dissipation capability of thermosets, leading to high toughness and strength. Due to the dynamic imine exchange and reversible noncovalent crosslinks, the thermosets can be rapidly and effectively reprocessed at 120 °C within 30 s. Importantly, the thermosets can be efficiently depolymerized at room temperature, and the recovered materials retain the structural integrity and mechanical properties of the original samples. This strategy may be employed to design tough, closed-loop recyclable epoxy thermosets for practical applications.

7.
Dalton Trans ; 53(16): 7023-7034, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38563397

RESUMEN

The development of a high specific capacity and stable vanadium-based cathode material is very attractive for aqueous zinc-ion batteries (ZIBs). Herein, an in situ electrochemically oxidized cathode is fabricated based on a V2O3@MXene cathode for Zn-ion storage. V2O3@MXene undergoes a phase transition to Zn3(OH)2V2O7·2H2O and ZnyVOz on the first charge, thus allowing for the subsequent insertion/de-insertion of zinc ions, which can be regulated by the amount of H2O in the electrolyte. The MXene in the composite was also beneficial to electron transfer and cycling stability. V2O3@MXene delivered a high capacity of 450 mA h g-1 at 0.2 A g-1, ultra-high-rate performance and cycling stability as well as high energy density.

8.
Adv Mater ; 36(25): e2314271, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38569202

RESUMEN

Transition metal chalcogenides (TMCs) emerge as promising anode materials for sodium-ion batteries (SIBs), heralding a new era of energy storage solutions. Despite their potential, the mechanisms underlying their performance enhancement and susceptibility to failure in ether-based electrolytes remain elusive. This study delves into these aspects, employing CoS2 electrodes as a case in point to elucidate the phenomena. The investigation reveals that CoS2 undergoes a unique irreversible and progressive solid-liquid-solid phase transition from its native state to sodium polysulfides (NaPSs), and ultimately to a Cu1.8S/Co composite, accompanied by a gradual morphological transformation from microspheres to a stable 3D porous architecture. This reconstructed 3D porous structure is pivotal for its exceptional Na+ diffusion kinetics and resilience to cycling-induced stress, being the main reason for ultrastable cycling and ultrahigh rate capability. Nonetheless, the CoS2 electrode suffers from an inevitable cycle life termination due to the microshort-circuit induced by Na metal corrosion and separator degradation. Through a comparative analysis of various TMCs, a predictive framework linking electrode longevity is established to electrode potential and Gibbs free energy. Finally, the cell failure issue is significantly mitigated at a material level (graphene encapsulation) and cell level (polypropylene membrane incorporation) by alleviating the NaPSs shuttling and microshort-circuit.

9.
Biosens Bioelectron ; 255: 116235, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38579623

RESUMEN

Multiplexed immunodetection, which achieves qualitative and quantitative outcomes for multiple targets in a single-run process, provides more sufficient results to guarantee food safety. Especially, lateral flow immunoassay (LFIA), with the ability to offer multiple test lines for analytes and one control line for verification, is a forceful candidate in multiplexed immunodetection. Nevertheless, given that single-signal mode is incredibly vulnerable to interference, further efforts should be engrossed on the combination of multiplexed immunodetection and multiple signals. Photothermal signal has sparked significant excitement in designing immunosensors. In this work, by optimizing and comparing the amount of gold, CuS@Au heterojunctions (CuS@Au HJ) were synthesized. The dual-plasmonic metal-semiconductor hybrid heterojunction exhibits a synergistic photothermal performance by increasing light absorption and encouraging interfacial electron transfer. Meanwhile, the colorimetric property is synergistic enhanced, which is conducive to reduce the consumption of antibodies and then improve assay sensitivity. Therefore, CuS@Au HJ are suitable to be constructed in a dual signal and multiplexed LFIA (DSM-LFIA). T-2 toxin and deoxynivalenol (DON) were used as model targets for the simulated multiplex immunoassay. In contrast to colloidal gold-based immunoassay, the built-in sensor has increased sensitivity by ≈ 4.42 times (colorimetric mode) and ≈17.79 times (photothermal mode) for DON detection and by ≈ 1.75 times (colorimetric mode) and ≈13.09 times (photothermal mode) for T-2 detection. As a proof-of-concept application, this work provides a reference to the design of DSM-LFIA for food safety detection.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Colorimetría , Inmunoensayo , Metales
10.
Small ; 20(34): e2400903, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38616776

RESUMEN

Rechargeable magnesium batteries (RMBs) are a promising energy-storage technology with low cost and high reliability, while the lack of high-performance cathodes is impeding the development. Herein, a series of amorphous cobalt polyselenides (CoSex, x>2) is synthesized with the assistance of organic amino-terminal hyperbranched polymer (AHP) additive and investigated as cathodes for RMBs. The coordination of cobalt cations with the amino groups of AHP leads to the formation of amorphous CoSex rather than crystalline CoSe2. The amorphous structure is favorable for magnesium-storage reaction kinetics, and the polyselenide anions provide extra capacities besides the redox of cobalt cations. Moreover, the organic AHP molecules retained in CoSex-AHP provide an elastic matrix to accommodate the volume change of conversion reaction. With a moderate x value (2.73) and appropriate AHP content (11.58%), CoSe2.7-AHP achieves a balance between capacity and cycling stability. Amorphous CoSe2.7-AHP provides high capacities of 246.6 and 94 mAh g‒1, respectively, at 50 and 2000 A g‒1, as well as a capacity retention rate of 68.5% after 300 cycles. The mechanism study demonstrates CoSex-AHP undergoes reversible redox of Co2+/3+↔Co0 and Sen 2‒↔Se2‒. The present study demonstrates amorphous polyselenides with cationic-anionic redox activities is as a feasible strategy to construct high-capacity cathode materials for RMBs.

11.
Anal Chem ; 96(17): 6588-6598, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38619494

RESUMEN

How timely identification and determination of pathogen species in pathogen-contaminated foods are responsible for rapid and accurate treatments for food safety accidents. Herein, we synthesize four aggregation-induced emissive nanosilicons with different surface potentials and hydrophobicities by encapsulating four tetraphenylethylene derivatives differing in functional groups. The prepared nanosilicons are utilized as receptors to develop a nanosensor array according to their distinctive interactions with pathogens for the rapid and simultaneous discrimination of pathogens. By coupling with machine-learning algorithms, the proposed nanosensor array achieves high performance in identifying eight pathogens within 1 h with high overall accuracy (93.75-100%). Meanwhile, Cronobacter sakazakii and Listeria monocytogenes are taken as model bacteria for the quantitative evaluation of the developed nanosensor array, which can successfully distinguish the concentration of C. sakazakii and L. monocytogenes at more than 103 and 102 CFU mL-1, respectively, and their mixed samples at 105 CFU mL-1 through the artificial neural network. Moreover, eight pathogens at 1 × 104 CFU mL-1 in milk can be successfully identified by the developed nanosensor array, indicating its feasibility in monitoring food hazards.


Asunto(s)
Microbiología de Alimentos , Listeria monocytogenes , Aprendizaje Automático , Listeria monocytogenes/aislamiento & purificación , Cronobacter sakazakii/aislamiento & purificación , Dióxido de Silicio/química , Sistemas de Atención de Punto , Animales , Leche/microbiología , Leche/química , Técnicas Biosensibles , Redes Neurales de la Computación
12.
Environ Sci Pollut Res Int ; 31(17): 25929-25939, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38488916

RESUMEN

In a laboratory scale, an anaerobic baffled reactor (ABR) consisting of eight compartments, the heterotrophic combining sulfur autotrophic processes under different reflux ratios were constructed to achieve effective perchlorate removal and alleviate sulfur disproportionation reaction. Perchlorate was efficiently removed with effluent perchlorate concentration below 0.5 µg/L when the influent perchlorate concentration was 1030 mg/L during stages I ~ V, indicating that heterotrophic combining sulfur autotrophic perchlorate reduction processes can effectively achieve high concentration perchlorate removal. Furthermore, the 100% reflux ratio could reduce the contact time between sulfur particles and water; thus, the sulfur disproportionation reaction was inhibited. However, the inhibition effect of reflux on sulfur disproportionation was attenuated due to dilute perchlorate concentration when a reflux ratio of 150% and 200% was implemented. Meanwhile, the content of extracellular polymeric substances (EPS) in the heterotrophic unit (36.79 ~ 45.71 mg/g VSS) was higher than that in the sulfur autotrophic unit (22.19 ~ 25.77 mg/g VSS), indicating that high concentration perchlorate stress in the heterotrophic unit promoted EPS secretion. Thereinto, the PN content of sulfur autotrophic unit decreased in stage III and stage V due to decreasing perchlorate concentration in the autotrophic unit. Meanwhile, the PS content increased with increasing reflux in the autotrophic unit, which was conducive to the formation of biofilm. Furthermore, the high-throughput sequencing result showed that Proteobacteria, Chloroflexi, Firmicutes, and Bacteroidetes were the dominant phyla and Longilinea, Diaphorobacter, Acinetobacter, and Nitrobacter were the dominant genus in ABR, which were associated with heterotrophic or autotrophic perchlorate reduction and beneficial for effective perchlorate removal. The study indicated that reflux was a reasonable strategy for alleviating sulfur disproportionation in heterotrophic combining sulfur autotrophic perchlorate removal processes.


Asunto(s)
Reactores Biológicos , Percloratos , Anaerobiosis , Reactores Biológicos/microbiología , Procesos Autotróficos , Procesos Heterotróficos , Azufre , Desnitrificación , Nitratos
13.
Lab Chip ; 24(8): 2272-2279, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38504660

RESUMEN

A highly sensitive lateral flow immunoassay (LFIA) is developed for the enzyme-catalyzed and double-reading determination of clenbuterol (CLE), in which a new type of probe was adopted through the direct electrostatic adsorption of ultra-small copper-gold bimetallic enzyme mimics (USCGs) and monoclonal antibodies. In the assay, based on the peroxidase activity of USCG, the chromogenic substrate TMB-H2O2 was introduced to trigger its color development, and the results were compared with those before catalysis. The detection sensitivity after catalysis is 0.03 ng mL-1 under optimal circumstances, which is 6-fold better than that of the traditional Au NPs-based LFIA and 2-fold greater than that before catalysis. This approach was successfully applied to the detection of CLE in milk, pork and mutton samples with an optimum assay time of 7 min and best catalytic time of 80 s, after which satisfactory recoveries of 98.53-117.79% were obtained. Cu-Au nanoparticles as a signal tag and the use of their nanozyme properties are the first applications in the field of LFIA. This work can be a promising exhibition for the application of a cheaper substitute for HRP, ultra-small bimetallic enzyme mimics, in LFIAs.


Asunto(s)
Clenbuterol , Nanopartículas del Metal , Límite de Detección , Cobre , Oro/química , Peróxido de Hidrógeno , Nanopartículas del Metal/química , Catálisis , Inmunoensayo/métodos
14.
RSC Adv ; 14(12): 8167-8177, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38469186

RESUMEN

This study describes, for the first time, the development and validation of a novel ultrasensitive chemiluminescence enzyme immunoassay (CLEIA) for the quantification of atezolizumab (ATZ), a monoclonal antibody approved by the FDA for treatment of different types of cancer. The assay involved the non-competitive binding of ATZ to its specific antigen (PD-L1 protein). The immune complex of PD-L1/ATZ formed on the internal surface of the plate wells was quantified by a novel chemiluminescence (CL)-producing horseradish peroxidase (HRP) reaction. The reaction employed a highly efficient CL enhancer for the HRP-luminol-hydrogen peroxide reaction which was 4-(imidazol-1-yl)phenol. The conditions of the CLEIA and its detection system were refined, and the optimum procedures were established. The CLEIA was validated in accordance with the guidelines of immunoassay validation for bioanalysis, and all the validation criteria were acceptable. The assay's limit of detection and limit of quantitation were 12.5 and 37.5 pg mL-1, respectively, with a working dynamic range of 25-800 pg mL-1. The assay enables the accurate and precise quantitation of ATZ in human plasma samples without any interferences from endogenous substances and/or the plasma matrix. The results of the proposed CLEIA were favourably comparable with those of a pre-validated enzyme-linked immunosorbent assay using a colorimetric detection system. The CLEIA is characterized by simple and high throughput features. The CLEIA is superior to the existing analytical methodologies for ATZ. The proposed CLEIA has a great value in the quantitation of ATZ in clinical settings for assessment of its pharmacokinetics, therapeutic drug monitoring, and refining the safety profile.

15.
Nanomicro Lett ; 16(1): 161, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38526682

RESUMEN

With the merits of the high energy density of batteries and power density of supercapacitors, the aqueous Zn-ion hybrid supercapacitors emerge as a promising candidate for applications where both rapid energy delivery and moderate energy storage are required. However, the narrow electrochemical window of aqueous electrolytes induces severe side reactions on the Zn metal anode and shortens its lifespan. It also limits the operation voltage and energy density of the Zn-ion hybrid supercapacitors. Using 'water in salt' electrolytes can effectively broaden their electrochemical windows, but this is at the expense of high cost, low ionic conductivity, and narrow temperature compatibility, compromising the electrochemical performance of the Zn-ion hybrid supercapacitors. Thus, designing a new electrolyte to balance these factors towards high-performance Zn-ion hybrid supercapacitors is urgent and necessary. We developed a dilute water/acetonitrile electrolyte (0.5 m Zn(CF3SO3)2 + 1 m LiTFSI-H2O/AN) for Zn-ion hybrid supercapacitors, which simultaneously exhibited expanded electrochemical window, decent ionic conductivity, and broad temperature compatibility. In this electrolyte, the hydration shells and hydrogen bonds are significantly modulated by the acetonitrile and TFSI- anions. As a result, a Zn-ion hybrid supercapacitor with such an electrolyte demonstrates a high operating voltage up to 2.2 V and long lifespan beyond 120,000 cycles.

16.
Anal Chem ; 96(12): 5046-5055, 2024 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-38488055

RESUMEN

Bimodal-type multiplexed immunoassays with complementary mode-based correlation analysis are gaining increasing attention for enhancing the practicability of the lateral flow immunoassay (LFIA). Nonetheless, the restriction in visually indistinguishable multitargets induced by a single fluorescent color and difficulty in single acceptor ineffectual fluorescence quenching due to the various spectra of multiple different donors impede the further execution of colorimetric-fluorescence bimodal-type multiplexed LFIAs. Herein, the precise spectral overlap-based donor-acceptor pair construction strategy is proposed by regulating the size of the nanocore, coating it with an appropriate nanoshell, and selecting a suitable fluorescence donor with distinct colors. By in situ coating Prussian blue nanoparticles (PBNPs) on AuNPs with a tunable size and absorption spectrum, the resultant APNPs demonstrate efficient fluorescence quenching ability, higher colloidal stability, remarkable colorimetric intensity, and an enhanced antibody coupling efficiency, all of which facilitate highly sensitive bimodal-type LFIA analysis. Following integration with competitive-type immunoreaction, this precise spectral overlap-supported spatial separation traffic light-typed colorimetric-fluorescence dual-response assay (coined as the STCFD assay) with the limits of detection of 0.013 and 0.152 ng mL-1 for ractopamine and clenbuterol, respectively, was proposed. This work illustrates the superiority of the rational design of a precise spectral overlap-based donor-acceptor pair, hinting at the enormous potential of the STCFD assay in the point-of-care field.


Asunto(s)
Clenbuterol , Nanopartículas del Metal , Oro , Inmunoensayo , Fenómenos Químicos , Límite de Detección
17.
J Agric Food Chem ; 72(8): 4405-4414, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38357784

RESUMEN

The photothermal lateral flow immunoassay (LFIA) is of great significance to suitable for on-site semiquantitative detection, which has the upper hand in further constructing detection methods for low-concentration targets. Herein, we presented a doping engineering-powered nanoheterostructure with an enhanced photothermal performance strategy, employing bimetallic nanocuboid Pt3Sn (PSNCs) as a proof of concept. With the help of finite element simulation analysis, the contrast of direct temperature experiment, and the evaluation of photothermal conversion efficiency (η), the distinguished and enthusiastic photothermal feedback of PSNCs is proved. Based on steady bright black of colorimetric and superior photothermal performance, the PSNCs were employed to construct an ultrasensitive model LIFA for detecting Salmonella typhimurium (S. typhimurium), which achieved the double-signal semiquantitative detection, the detection limit reached 103 cfu mL-1 (colorimetric mode) and 102 cfu mL-1 (photothermal mode), which is 100 times higher than that of the traditional colloidal gold method. In addition, the method was effective for the detection of targets in dairy samples only through a simple dilution treatment, which was completed within 15 min. Meanwhile, this PSNCs dual-signal LFIA demonstrated the sensitive detection of S. typhimurium due to the excellent colorimetric signal and significant photothermal performance, which provides a broad spectrum for the future detection of foodborne pathogens.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Animales , Salmonella typhimurium , Inmunoensayo , Leche , Nanopartículas del Metal/química , Límite de Detección
18.
ACS Nano ; 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38334266

RESUMEN

Sodium-ion batteries (SIBs) are a promising electrochemical energy storage system; however, their practical application is hindered by the sluggish kinetics and interfacial instability of anode-active materials. Here, to circumvent these issues, we proposed the multiscale interface engineering of S-doped TiO2 electrodes with minor sulfur/carbon inlaying (S/C@sTiO2), where the electrode-electrolyte interface (SEI) and electrode-current collector interface (ECI) are tuned to improve the Na-storage performance. It is found that the S dopant greatly promotes the Na+ diffusion kinetics. Moreover, the ether electrolyte generates much less NaF in the cycled electrode, but relatively richer NaF in the SEI in comparison to fluoroethylene carbonate-contained ester electrolyte, leading to a thin (9 nm), stable, and kinetically favorable SEI film. More importantly, the minor sodium polysulfide intermediates chemically interact with the Cu current collector to form a Cu2S interface between the electrode and the Cu foil. The conductive tree root-like Cu2S ECI serves not only as active sites to boost the specific capacity but also as a 3D "second current collector" to reinforce the electrode and improve the Na+ reaction kinetics. The synergy of S-doping and optimized SEI and ECI realizes large specific capacity (464.4 mAh g-1 at 0.1 A g-1), ultrahigh rate capability (305.8 mAh g-1 at 50 A g-1), and ultrastable cycling performance (91.5% capacity retention after 3000 cycles at 5 A g-1). To the best of our knowledge, the overall SIB performances of S/C@sTiO2 are the best among all of the TiO2-based electrodes.

19.
J Agric Food Chem ; 72(9): 4493-4517, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38382051

RESUMEN

With the global limited food resources receiving grievous damage from frequent climate changes and ascending global food demand resulting from increasing population growth, perovskite nanocrystals with distinctive photoelectric properties have emerged as attractive and prospective luminogens for the exploitation of rapid, easy operation, low cost, highly accurate, excellently sensitive, and good selective biosensors to detect foodborne hazards in food practices. Perovskite nanocrystals have demonstrated supreme advantages in luminescent biosensing for food products due to their high photoluminescence (PL) quantum yield, narrow full width at half-maximum PL, tunable PL in the entire visible spectrum, easy preparation, and various modification strategies compared with conventional semiconductors. Herein, we have carried out a comprehensive discussion concerning perovskite nanocrystals as luminogens in the application of high-performance biosensing of foodborne hazards for food products, including a brief introduction of perovskite nanocrystals, perovskite nanocrystal-based biosensors, and their application in different categories of food products. Finally, the challenges and opportunities faced by perovskite nanocrystals as superior luminogens were proposed to promote their practicality in the future food supply.


Asunto(s)
Compuestos de Calcio , Análisis de los Alimentos , Nanopartículas , Óxidos , Titanio , Estudios Prospectivos , Calidad de los Alimentos
20.
Food Chem ; 441: 138374, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38219366

RESUMEN

In this work, an ultra-sensitive lateral flow immunoassay (LFIA) with SERS/colorimetric dual signal mode was constructed for the detection of nitrofurazone metabolites, an antibiotic prohibited in animal-origin foods. Au@4-MBN@AgNRs nano-sandwich structural signal tag integrates the unique advantages of high signal-to-background ratio and anti-matrix interference through geometric control of SERS tag and nanoengineering adjustment of chemical composition. Under the optimal conditions, the detection limits of nitrofurazone metabolites by SERS/colorimetric dual-mode LFIA were 20 pg/mL (colorimetric mode) and 0.08 pg/mL (SERS mode). Excitingly, the vLOD of the colorimetric signal improved by a factor of 100 compared to Au NPs-based LFIA. In this study, the proposed dual-mode LFIA was successfully applied to the on-site real-time detection of honey, milk powder, and chicken. It is anticipated that with low background interference and anti-matrix interference output signal, our proposed dual-mode strategy can pave an innovative pathway for the fabrication of a powerful biosensor.


Asunto(s)
Nanopartículas del Metal , Nitrofurazona , Animales , Oro/química , Inmunoensayo , Antibacterianos , Colorimetría , Nanopartículas del Metal/química , Límite de Detección , Espectrometría Raman
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...