Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.100
Filtrar
1.
JCI Insight ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954484

RESUMEN

Upon infection, naïve CD8+ T cells differentiate into cytotoxic effector cells to eliminate the pathogen-infected cells. Although many mechanisms underlying this process have been demonstrated, the regulatory role of chromatin remodel system in this process remains largely unknown. Here we showed that BRD7, a component of the polybromo-associated BRG1-associated factor complex (PBAF), was required for naïve CD8+ T cells to differentiate into functional short-lived effector cells (SLECs) in response to acute infections caused by influenza virus or lymphocytic choriomeningitis virus (LCMV). BRD7-deficiency in CD8+ T cells resulted in profound defects in effector population and functions, thereby impairing viral clearance and host recovery. Further mechanical studies indicated that the expression of BRD7 significantly turned to high from naïve CD8+ T cells to effector cells, bridged BRG1 and PBRM1 to the core module of PBAF complex, consequently facilitating the assembly of PBAF complex rather than BAF complex in the effector cells. The PBAF complex changed the chromatin accessibility at the loci of Tbx21 gene and up-regulated its expression, leading to the maturation of effector T cells. Our research confirms BRD7 and the PBAF complex are key in CD8+ T cell development and present a significant target for advancing immune therapies.

2.
Chemistry ; : e202401948, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38955768

RESUMEN

Creating cross-linking to establish efficient inter-chain charge-transfer channels in carbon nitride represents a promising strategy for enhancing its photocatalytic capabilities. Molten salt-assisted calcining has emerged as a method for preparing cross-linked carbon nitrides. However, the precise influence of molten salts on the molecular structure of carbon nitride remains to be fully elucidated. Herein, we develop a KCl guided cross-linking reaction to preliminarily reveal the formation mechanism of cross-linking. The cross-linking reaction is initiated by the pre-coordination of amino groups with K+. Subsequent heating at high temperature converts the amino groups into chlorines. Then, dechlorination leads to the formation of cross-linking. Thus, this cross-linking reaction can be accurately described as a pre-coordination-induced, two-step deamination reaction. The pre-coordination step plays a pivotal role in the cross-linking process. Sufficient pre-coordination results in a relatively high cross-linking degree of the as-prepared CNK-2. Consequently, CNK-2 demonstrates a significantly enhanced photocatalytic H2O2 production, with a generation rate of 682 µmol·L-1·h-1, about 59 times that of traditional carbon nitride.

3.
J Clin Oncol ; : JCO2302261, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38950321

RESUMEN

PURPOSE: To assess whether the integration of PD-1 inhibitor with total neoadjuvant therapy (iTNT) can lead to an improvement in complete responses (CRs) and favors a watch-and-wait (WW) strategy in patients with proficient mismatch repair or microsatellite stable (pMMR/MSS) locally advanced rectal cancer (LARC). PATIENTS AND METHODS: We conducted a prospective, multicenter, randomized, open-label, phase II trial using a pick-the-winner design. Eligible patients with clinical T3-4 and/or N+ rectal adenocarcinoma were randomly assigned to group A for short-course radiotherapy (SCRT) followed by six cycles of consolidation immunochemotherapy with capecitabine and oxaliplatin and toripalimab or to group B for two cycles of induction immunochemotherapy followed by SCRT and the rest four doses. Either total mesorectal excision or WW was applied on the basis of tumor response. The primary end point was CR which included pathological CR (pCR) after surgery and clinical CR (cCR) if WW was applicable, with hypothesis of an increased CR of 40% after iTNT compared with historical data of 25% after conventional TNT. RESULTS: Of the 130 patients enrolled, 121 pMMR/MSS patients were evaluable (62 in group A and 59 in group B). At a median follow-up of 19 months, CR was achieved at 56.5% in group A and 54.2% in group B. Both groups fulfilled the predefined statistical hypothesis (P < .001). Both groups reported a pCR rate of 50%. Respectively, 15 patients in each group underwent WW and remained disease free. The most frequent grade 3 to 4 toxicities were thrombocytopenia and neutropenia. Patients in group A had higher rate of cCR (43.5% v 35.6%) at restaging and lower rate of grade 3 to 4 thrombocytopenia (24.2% v 33.9%) during neoadjuvant treatment. CONCLUSION: The iTNT regimens remarkably improved CR rates in pMMR/MSS LARC compared with historical benchmark with acceptable toxicity. Up-front SCRT followed by immunochemotherapy was selected for future definitive study.

4.
Crit Rev Food Sci Nutr ; : 1-15, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38950560

RESUMEN

In cereals, the protein body and protein matrix are usually two morphological protein structures. However, processing treatments can affect protein structures, change protein bodies into the matrix, or induce a change in the matrix structure; therefore, the processing-induced matrix was listed as the third morphological structure of the protein. Previous research on the effect of proteins was mainly based on protein content and composition, but these studies arrived at different conclusions. Studying the effect of protein morphological structures on sensorial property and starch digestion can provide a theoretical basis for selecting cultivars with high sensorial property and help produce low-glycemic index foods for people with diabetes, controlling their postprandial blood sugar. This study aimed to review the distribution and structure of protein bodies, protein matrices, and processing-induced matrices, as well as their influence on cereal sensorial property and starch digestion. Therefore, we determined the protein morphological structures in different cereal cultivars and summarized its impact. Protein bodies mainly have steric stabilization effects on starch gelatinization, whereas the protein matrix serves as a physical barrier surrounding the starch to inhibit water absorption and α-amylase. Processing can change protein morphological structures, enabling protein bodies to act as a physical matrix barrier.

5.
Asian J Psychiatr ; 99: 104137, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38959836

RESUMEN

Executive impairment in schizophrenia is common, but the mechanism remains unclear. This is the first study to use simultaneously functional near-infrared spectroscopy (fNIRS) to monitor the hemodynamic response in schizophrenia during the MATRICS Consensus Cognitive Battery (MCCB). Here, we monitored relative changes in oxyhemoglobin concentration in the medial prefrontal cortex (mPFC) during Trail Making Test, Symbol Coding Test and Mazes Test of the MCCB in 63 patients (29 females) with schizophrenia and 32 healthy controls (15 females). Results showed that patients with schizophrenia scored lower than healthy controls on all three tests (P < 0.001), but mPFC activation was significantly higher during the test (P < 0.03). Higher activation of the mPFC may reflect abnormal information processing in schizophrenia. In addition, the results also showed sex differences in hemodynamic activation during the task in patients with schizophrenia, and fNIRS has the potential to be a clinical adjunct to screening for cognitive function in schizophrenia.

6.
Eur J Clin Nutr ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961262

RESUMEN

Low-protein diet (LPD) is the core of dietary and nutritional therapy for non-dialysis chronic kidney disease (CKD) patients. In addition, physical exercise could prevent and treat various illnesses and chronic diseases. The objective of the study was to search for and appraise evidence on the effect of additional physical exercise on patients' nutritional status and indicators of disease progression when compared with the LPD alone. PubMed Central, Embase, Cochrane, and Web of Knowledge for randomized controlled trials (published between January 1, 1956 and May 17, 2023) were searched. A total of 8698 identified studies, 9 were eligible and were included in our analysis (N = 250 participants). Compared with the LPD alone, additional physical exercise reduced serum creatinine by a mean of -0.21 mg/dL (95% CI -0.39 to -0.03) in CKD patients. Similarly, blood pressure decreased after physical exercise, with systolic blood pressure decreasing by -7.05 mm Hg (95% CI -13.13 to -0.96) and diastolic blood pressure decreasing by -5.31 mm Hg (95% CI -7.99 to -2.62). Subgroup analyses revealed that resistance exercise (RE) was effective in decreasing estimated glomerular filtration rate (eGFR) of -1.71 mL/min per 1.73 m² (95% CI -3.29 to -0.14). In addition, the VO2peak increasing by 2.41 mL/kg/min (95% CI 0.13 to 4.70) when physical exercise was continued for 24 weeks. The above results suggest that the LPD with additional physical exercise care is more beneficial for patients with CKD.

7.
J Orthop Surg Res ; 19(1): 389, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956611

RESUMEN

BACKGROUND: Elevation of carpal tunnel pressure is known to be associated with carpal tunnel syndrome. This study aimed to correlate the shear wave elastography in the transverse carpal ligament (TCL) with carpal tunnel pressures using a cadaveric model. METHODS: Eight human cadaveric hands were dissected to evacuate the tunnels. A medical balloon was inserted into each tunnel and connected to a pressure regulator to simulate tunnel pressure in the range of 0-210 mmHg with an increment of 30 mmHg. Shear wave velocity and modulus was measure in the middle of TCL. RESULTS: SWV and SWE were significantly dependent on the pressure levels (p < 0.001), and positively correlated to the tunnel pressure (SWV: R = 0.997, p < 0.001; SWE: R = 0.996, p < 0.001). Regression analyses showed linear relationship SWV and pressure (SWV = 4.359 + 0.0263 * Pressure, R2 = 0.994) and between SWE and pressure (SWE = 48.927 + 1.248 * Pressure, R2 = 0.996). CONCLUSION: The study indicated that SWV and SWE in the TCL increased linearly as the tunnel pressure increased within the current pressure range. The findings suggested that SWV/SWE in the TCL has the potential for prediction of tunnel pressure and diagnosis of carpal tunnel syndrome.


Asunto(s)
Cadáver , Síndrome del Túnel Carpiano , Diagnóstico por Imagen de Elasticidad , Ligamentos Articulares , Presión , Humanos , Síndrome del Túnel Carpiano/diagnóstico por imagen , Síndrome del Túnel Carpiano/fisiopatología , Diagnóstico por Imagen de Elasticidad/métodos , Ligamentos Articulares/diagnóstico por imagen , Ligamentos Articulares/fisiopatología , Masculino , Femenino , Persona de Mediana Edad , Anciano
8.
Orphanet J Rare Dis ; 19(1): 246, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956726

RESUMEN

OBJECTIVE: The Center for Neurologic Study Bulbar Function Scale (CNS-BFS) was specifically designed as a self-reported measure of bulbar function. The purpose of this research was to validate the Chinese translation of the CNS-BFSC as an effective measurement for the Chinese population with ALS. METHODS: A total of 111 ALS patients were included in this study. The CNS-BFSC score, three bulbar function items from the ALSFRS-R, and visual analog scale (VAS) score for speech, swallowing and salivation were assessed in the present study. Forty-six ALS patients were retested on the same scale 5-10 days after the first evaluation. RESULTS: The CNS-BFSC sialorrhea, speech and swallowing subscores were separately correlated with the VAS subscores (p < 0.001). The CNS-BFSC total score and sialorrhea and speech scores were significantly correlated with the ALSFRS-R bulbar subscore (p < 0.001). The CNS-BFSC total score and ALSFRS-R bulbar subscale score were highly predictive of a clinician diagnosis of impaired bulbar function (area under the receiver operating characteristic curve, 0.947 and 0.911, respectively; p < 0.001). A cutoff value for the CNS-BFSC total score was selected by maximizing Youden's index; this cutoff score was 33, with 86.4% sensitivity and 93.3% specificity. The CNS-BFSC total score and the sialorrhea, speech and swallowing subscores had good-retest reliability (p > 0.05). The Cronbach's α of the CNS-BFSC was 0.972. CONCLUSION: The Chinese version of the CNS-BFSC has acceptable efficacy and reliability for the assessment of bulbar dysfunction in ALS patients.


Asunto(s)
Esclerosis Amiotrófica Lateral , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Amiotrófica Lateral/fisiopatología
9.
Front Endocrinol (Lausanne) ; 15: 1308841, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962681

RESUMEN

Background: Untargeted metabonomics has provided new insight into the pathogenesis of sarcopenia. In this study, we explored plasma metabolic signatures linked to a heightened risk of sarcopenia in a cohort study by LC-MS-based untargeted metabonomics. Methods: In this nested case-control study from the Adult Physical Fitness and Health Cohort Study (APFHCS), we collected blood plasma samples from 30 new-onset sarcopenia subjects (mean age 73.2 ± 5.6 years) and 30 healthy controls (mean age 74.2 ± 4.6 years) matched by age, sex, BMI, lifestyle, and comorbidities. An untargeted metabolomics methodology was employed to discern the metabolomic profile alterations present in individuals exhibiting newly diagnosed sarcopenia. Results: In comparing individuals with new-onset sarcopenia to normal controls, a comprehensive analysis using liquid chromatography-mass spectrometry (LC-MS) identified a total of 62 metabolites, predominantly comprising lipids, lipid-like molecules, organic acids, and derivatives. Receiver operating characteristic (ROC) curve analysis indicated that the three metabolites hypoxanthine (AUC=0.819, 95% CI=0.711-0.927), L-2-amino-3-oxobutanoic acid (AUC=0.733, 95% CI=0.598-0.868) and PC(14:0/20:2(11Z,14Z)) (AUC= 0.717, 95% CI=0.587-0.846) had the highest areas under the curve. Then, these significant metabolites were observed to be notably enriched in four distinct metabolic pathways, namely, "purine metabolism"; "parathyroid hormone synthesis, secretion and action"; "choline metabolism in cancer"; and "tuberculosis". Conclusion: The current investigation elucidates the metabolic perturbations observed in individuals diagnosed with sarcopenia. The identified metabolites hold promise as potential biomarkers, offering avenues for exploring the underlying pathological mechanisms associated with sarcopenia.


Asunto(s)
Metabolómica , Sarcopenia , Humanos , Sarcopenia/metabolismo , Sarcopenia/sangre , Masculino , Metabolómica/métodos , Femenino , Anciano , Estudios de Casos y Controles , Cromatografía Liquida/métodos , Biomarcadores/sangre , Estudios de Cohortes , Metaboloma , Anciano de 80 o más Años , Espectrometría de Masas/métodos , Factores de Riesgo , Hipoxantina/sangre , Hipoxantina/metabolismo , Cromatografía Líquida con Espectrometría de Masas
10.
Plant Cell ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963884

RESUMEN

As an essential intrinsic component of photosystem II (PSII) in all oxygenic photosynthetic organisms, heme-bridged heterodimer cytochrome b559 (Cyt b559) plays critical roles in protection and assembly of PSII. However, the underlying mechanisms of Cyt b559 assembly are largely unclear. Here, we characterized the Arabidopsis (Arabidopsis thaliana) rph1 (resistance to Phytophthora1) mutant, which was previously shown to be susceptible to the oomycete pathogen Phytophthora brassicae. Loss of RPH1 leads to a drastic reduction in PSII accumulation, which can be primarily attributed to the defective formation of Cyt b559. Spectroscopic analyses showed that the heme level in PSII supercomplexes isolated from rph1 is significantly reduced, suggesting that RPH1 facilitates proper heme assembly in Cyt b559. Due to the loss of RPH1-mediated processes, a covalently bound PsbE-PsbF heterodimer is formed during the biogenesis of PSII. In addition, rph1 is highly photosensitive and accumulates elevated levels of ROS under photoinhibitory light conditions. RPH1 is a conserved intrinsic thylakoid protein present in green algae and terrestrial plants, but absent in Synechocystis, and it directly interacts with the subunits of Cyt b559. Thus, our data demonstrate that RPH1 represents a chloroplast acquisition specifically promoting the efficient assembly of Cyt b559, probably by mediating proper heme insertion into the apo-Cyt b559 during the initial phase of PSII biogenesis.

11.
Eur J Med Chem ; 276: 116639, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38964259

RESUMEN

Since influenza virus RNA polymerase subunit PAN is a dinuclear Mn2+ dependent endonuclease, metal-binding pharmacophores (MBPs) with Mn2+ coordination has been elucidated as a promising strategy to develop PAN inhibitors for influenza treatment. However, few attentions have been paid to the relationship between the optimal arrangement of the donor atoms in MBPs and anti-influenza A virus (IAV) efficacy. Given that, the privileged hydroxypyridinones fusing a seven-membered lactam ring with diverse side chains, chiral centers or cyclic systems were designed and synthesized. A structure-activity relationship study resulted in a hit compound 16l (IC50 = 2.868 ± 0.063 µM against IAV polymerase), the seven-membered lactam ring of which was fused a pyrrolidine ring. Further optimization of the hydrophobic binding groups on 16l afforded a lead compound (R, S)-16s, which exhibited a 64-fold more potent inhibitory activity (IC50 = 0.045 ± 0.002 µM) toward IAV polymerase. Moreover, (R, S)-16s demonstrated a potent anti-IAV efficacy (EC50 = 0.134 ± 0.093 µM) and weak cytotoxicity (CC50 = 15.35 µM), indicating the high selectivity of (R, S)-16s. Although the lead compound (R, S)-16s exhibited a little weaker activity than baloxavir, these findings illustrated the utility of a metal coordination-based strategy in generating novel MBPs with potent anti-influenza activity.

12.
Sci Rep ; 14(1): 15406, 2024 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965397

RESUMEN

Patients with multiple myeloma (MM) experience relapse and drug resistance; therefore, novel treatments are essential. Clotrimazole (CTZ) is a wide-spectrum antifungal drug with antitumor activity. However, CTZ's effects on MM are unclear. We investigated CTZ's effect on MM cell proliferation and apoptosis induction mechanisms. CTZ's effects on MM.1S, NCI- H929, KMS-11, and U266 cell growth were investigated using Cell Counting Kit-8 (CCK-8) assay. The apoptotic cell percentage was quantified with annexin V-fluorescein isothiocyanate/7-amino actinomycin D staining. Mitochondrial membrane potential (MMP) and cell cycle progression were evaluated. Reactive oxygen species (ROS) levels were measured via fluorescence microscopy. Expression of apoptosis-related and nuclear factor (NF)-κB signaling proteins was analyzed using western blotting. The CCK-8 assay indicated that CTZ inhibited cell proliferation based on both dose and exposure time. Flow cytometry revealed that CTZ decreased apoptosis and MMP and induced G0/G1 arrest. Immunofluorescence demonstrated that CTZ dose-dependently elevated in both total and mitochondrial ROS production. Western blotting showed that CTZ enhanced Bax and cleaved poly ADP-ribose polymerase and caspase-3 while decreasing Bcl-2, p-p65, and p-IκBα. Therefore, CTZ inhibits MM cell proliferation by promoting ROS-mediated mitochondrial apoptosis, inducing G0/G1 arrest, inhibiting the NF-κB pathway, and has the potential for treating MM.


Asunto(s)
Apoptosis , Proliferación Celular , Clotrimazol , Potencial de la Membrana Mitocondrial , Mitocondrias , Mieloma Múltiple , Especies Reactivas de Oxígeno , Humanos , Mieloma Múltiple/patología , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Clotrimazol/farmacología , Fase de Descanso del Ciclo Celular/efectos de los fármacos , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , FN-kappa B/metabolismo , Antineoplásicos/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos
13.
BMC Cancer ; 24(1): 800, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965506

RESUMEN

Drug resistance remains a significant challenge in the treatment of pancreatic cancer. The development of drug-resistant cell lines is crucial to understanding the underlying mechanisms of resistance and developing novel drugs to improve clinical outcomes. Here, a novel pancreatic cancer cell line, PDAC-X1, derived from Chinese patients has been established. PDAC-X1 was characterized by the immune phenotype, biology, genetics, molecular characteristics, and tumorigenicity. In vitro analysis revealed that PDAC-X1 cells exhibited epithelial morphology and cell markers (CK7 and CK19), expressed cancer-associated markers (E-cadherin, Vimentin, Ki-67, CEA, CA19-9), and produced pancreatic cancer-like organs in suspension culture. In vivo analysis showed that PDAC-X1 cells maintained tumorigenicity with a 100% tumor formation rate. This cell line exhibited a complex karyotype, dominated by subtriploid karyotypes. In addition, PDAC-X1 cells exhibited intrinsic multidrug resistance to multiple drugs, including gemcitabine, paclitaxel, 5-fluorouracil, and oxaliplatin. In conclusion, the PDAC-X1 cell line has been established and characterized, representing a useful and valuable preclinical model to study the underlying mechanisms of drug resistance and develop novel drug therapeutics to improve patient outcomes.


Asunto(s)
Carcinoma Ductal Pancreático , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Neoplasias Pancreáticas , Humanos , Línea Celular Tumoral , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Animales , Ratones , Resistencia a Múltiples Medicamentos/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Masculino , Femenino , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Gemcitabina , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico
14.
Chemosphere ; 362: 142744, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38950749

RESUMEN

Plant-microbe remediation technique is considered as a promising technology in removal of organic pollutants and its remediation efficiency is largely affected by a variety of surrounding environmental factors. Humic acid (HA) is the complex organic substance ubiquitous in environment, which characterized by its surfactant-like micelle microstructure and various reaction activity. In our study, a plant-microbe association with high p-tert-Butylphenol (PTBP) degradation potential constructed by Spirodela polyrhiza and Sphingobium phenoxybenzoativorans Tas13 has been used, and the influence of HA on the PTBP degradation efficiency of S. polyrhiza-Tas13 association was investigated. The result showed that the presence of HA greatly improved PTBP removal efficiency of S. polyrhiza-Tas13. The reason accounted for this may be due to the presence of HA promoted bacterial cell propagation, altered bacterial cell wall permeability, increased catechol 2,3-dioxygenase (C23O) enzyme activity of strain Tas13, rather than increasing the colonization ability of strain Tas13 on to the root surface. This study will greatly facilitate the application of aquatic plant-microbe association in environmental remediation.

15.
Front Cell Infect Microbiol ; 14: 1309529, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38979512

RESUMEN

Background: Early prediction of prognosis may help early treatment measures to reduce mortality in critically ill coronavirus disease (COVID-19) patients. The study aimed to develop a mortality prediction model for critically ill COVID-19 patients. Methods: This retrospective study analyzed the clinical data of critically ill COVID-19 patients in an intensive care unit between April and June 2022. Propensity matching scores were used to reduce the effect of confounding factors. A predictive model was built using logistic regression analysis and visualized using a nomogram. Calibration and receiver operating characteristic (ROC) curves were used to estimate the accuracy and predictive value of the model. Decision curve analysis (DCA) was used to examine the value of the model for clinical interventions. Results: In total, 137 critically ill COVID-19 patients were enrolled; 84 survived, and 53 died. Univariate and multivariate logistic regression analyses revealed that aspartate aminotransferase (AST), creatinine, and myoglobin levels were independent prognostic factors. We constructed logistic regression prediction models using the seven least absolute shrinkage and selection operator regression-selected variables (hematocrit, red blood cell distribution width-standard deviation, procalcitonin, AST, creatinine, potassium, and myoglobin; Model 1) and three independent factor variables (Model 2). The calibration curves suggested that the actual predictions of the two models were similar to the ideal predictions. The ROC curve indicated that both models had good predictive power, and Model 1 had better predictive power than Model 2. The DCA results suggested that the model intervention was beneficial to patients and patients benefited more from Model 1 than from Model 2. Conclusion: The predictive model constructed using characteristic variables screened using LASSO regression can accurately predict the prognosis of critically ill COVID-19 patients. This model can assist clinicians in implementing early interventions. External validation by prospective large-sample studies is required.


Asunto(s)
COVID-19 , Enfermedad Crítica , Unidades de Cuidados Intensivos , Curva ROC , SARS-CoV-2 , Humanos , COVID-19/mortalidad , Enfermedad Crítica/mortalidad , Masculino , Femenino , Persona de Mediana Edad , Estudios Retrospectivos , Pronóstico , Anciano , Unidades de Cuidados Intensivos/estadística & datos numéricos , Modelos Logísticos , Nomogramas , Adulto , Aspartato Aminotransferasas/sangre
16.
Hortic Res ; 11(7): uhae150, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38988620

RESUMEN

SHORT VEGETATIVE PHASE (SVP), a member of the MADS-box transcription factor family, has been reported to regulate bud dormancy in deciduous perennial plants. Previously, three LcSVPs (LcSVP1, LcSVP2 and LcSVP3) were identified from litchi genome, and LcSVP2 was highly expressed in the terminal buds of litchi during growth cessation or dormancy stages and down-regulated during growth stages. In this study, the role of LcSVP2 in governing litchi bud dormancy was examined. LcSVP2 was highly expressed in the shoots, especially in the terminal buds at growth cessation stage, whereas low expression was showed in roots, female flowers and seeds. LcSVP2 was found to be located in the nucleus and have transcription inhibitory activity. Overexpression of LcSVP2 in Arabidopsis thaliana resulted in a later flowering phenotype compared to the wild-type control. Silencing LcSVP2 in growing litchi terminal buds delayed re-entry of dormancy, resulting in significantly lower dormancy rate. The treatment also significantly up-regulated litchi FLOWERING LOCUS T2 (LcFT2). Further study indicates that LcSVP2 interacts with an AP2-type transcription factor, SMALL ORGAN SIZE1 (LcSMOS1). Silencing LcSMOS1 promoted budbreak and delayed bud dormancy. Abscisic acid (200 mg/L), which enforced bud dormancy, induced a short-term increase in the expression of LcSVP2 and LcSMOS1. Our study reveals that LcSVP2 may play a crucial role, likely together with LcSMOS1, in dormancy onset of the terminal bud and may also serve as a flowering repressor in evergreen perennial litchi.

17.
J Gastrointest Oncol ; 15(3): 1002-1019, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38989407

RESUMEN

Background: Tumor cell inhibition is a pivotal focus in anti-cancer research, and extensive investigations have been conducted regarding the role of p53. Numerous studies have highlighted its close association with reactive oxygen species (ROS). However, the precise impact of the antioxidant glutathione (GSH) in this context remains inadequately elucidated. Here, we will elucidate the anti-cancer mechanisms mediated by p53 following treatment with GSH. Methods: In this study, we employed a p53 gene knockout approach in SW480 colorectal cells and conducted comprehensive analyses of 20 amino acids and proteomics using liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). Results: These analyses unveiled profound alterations in amino acids and proteins triggered by GSH treatment, shedding light on novel phenomena and delineating the intricate interplay between GSH and cellular proteins. The deletion of the p53 gene exerts a profound influence on tumor cell proliferation. Moreover, tumor cell proliferation is significantly affected by elevated GSH levels. Importantly, in the absence of the p53 gene, cells exhibit heightened sensitivity to GSH, leading to inhibited cell growth. The combined therapeutic approach involving GSH and p53 gene deletion expedites the demise of tumor cells. It is noteworthy that this treatment leads to a marked decline in amino acid metabolism, particularly affecting the down-regulation of methionine (Met) and phenylalanine (Phe) amino acids. Among the 41 proteins displaying significant changes, 8 exhibit consistent alterations, with 5 experiencing decreased levels and 3 demonstrating increased quantities. These proteins primarily participate in crucial cellular metabolic processes and immune functions. Conclusions: In conclusion, the concurrent administration of GSH treatment and p53 gene deletion triggers substantial modifications in the amino acid and protein metabolism of tumor cells, primarily characterized by down-regulation. This, in turn, compromises cell metabolic activity and immune function, ultimately culminating in the demise of tumor cells. These newfound insights hold promising implications and could pave the way for the development of straightforward and efficacious anti-cancer treatments.

18.
Risk Anal ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38991854

RESUMEN

International relations (IR) have great uncertainty and instability. Bad IR or conflicts will bring about heavy economic losses and widespread social unrest domestically and internationally. The accurate prediction for bilateral relations can support decision making for timely responses, which will be used to find ways to maintain development in the complex international situation. An international relations quantitative evaluation model (IRQEM) is proposed by integrating a variety of research models and methods like the interpretative structural modeling method (ISM), Bayesian network (BN) model, the Bayesian search (BS), and the expectation-maximization (EM) algorithm, which is novel for IR research. Factors from several different fields are identified as BN nodes. Each node is assigned different state values. The hierarchical structure of these BN nodes is obtained by ISM. The data collection of 192 cases is used to construct the BN model by GeNIe 4.0. The IRQEM can be used to evaluate the influence of emergencies on IR. The critical factors of IR also can be explored through our proposed model. Results show that the prediction of bilateral relations under emergencies can be realized by updating the indicator set when emergencies occur. The capability to anticipate threats of IR changes is advanced by optimizing the reporting information of IR forecasting through a combination of qualitative and quantitative methods, charts, and texts. Relevant analysis results can provide support for national security decision making.

19.
Artículo en Inglés | MEDLINE | ID: mdl-38993025

RESUMEN

Metal halide perovskites have demonstrated superior sensitivity, lower detection limits, stability, and exceptional photoelectric properties in comparison to existing commercially available X-ray detector materials, showing their potential for shaping the next generation of X-ray detectors. Nevertheless, significant challenges persist in the seamless integration of these materials into pixelated array sensors for large-area X-ray direct detection imaging. In this article, we propose a strategy for fabricating large-scale array devices using a double-sided bonding process. The approach involves depositing a wet film on the surface of a thin-film transistor substrate to establish a robust bond between the substrate and δ-CsPbI3 wafer via van der Waals force, thereby facilitating area-array imaging. Additionally, the freestanding polycrystalline δ-CsPbI3 wafer demonstrated a competitive ultralow detection limit of 3.46 nGyair s-1 under 50 kVP X-ray irradiation, and the δ-CsPbI3 wafer still maintains a stable signal output (signal current drift is 3.5 × 10-5 pA cm-1 s-1 V-1) under the accumulated radiation dose of 234.9 mGyair. This strategy provides a novel perspective for the industrial production of large-area X-ray flat panel detectors utilizing perovskites and their derivatives.

20.
Artículo en Inglés | MEDLINE | ID: mdl-38995666

RESUMEN

Controlling the optical activity of halide perovskite materials through modulation of the coordination configurations of the metal ions is important. Herein, a novel manganese-based halide, specifically diaquatetrakis(methyldiphenylphosphine oxide)manganese(II) tetrachloridomanganate(II), [Mn(C13H13OP)4(H2O)2][MnCl4] or [Mn(MDPPO)4(H2O)2][MnCl4] (MDPPO is methyldiphenylphosphine oxide), was synthesized through the solvothermal reaction of MnCl2 with the neutral molecule MDPPO. In this compound, [Mn(MDPPO)4(H2O)2]2+ acts as the cation, while [MnCl4]2- serves as the anion, enabling the co-existence of tetrahedral and octahedral structures within the same system. Remarkably, the compound exhibits efficient red-light emission at 662 nm, distinct from the green-light emission typically observed in MnX4-based halides. Theoretical calculations show that the red emission comes from the charge transfer from the MDPPO to the Mn2+ of [MnCl4]2-. This work provides a new perspective for the design and synthesis of red-light-emitting manganese-based halides with unique structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...