Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.927
Filtrar
1.
World J Clin Cases ; 12(21): 4813-4819, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39070823

RESUMEN

BACKGROUND: Hepatoid adenocarcinoma of the lung (HAL) is a rare type of non-small cell lung cancer (NSCLC), histologically similar to hepatocellular carcinoma. HAL has high malignancy and poor prognosis, and a better treatment plan needs further study. CASE SUMMARY: In order to deeply understand the occurrence and development of HAL, here we report a case of HAL with extensive metastasis of alpha fetoprotein negative KRAS A146T mutation. The patient refused chemotherapy and received one course of treatment (immune checkpoint inhibitors), and died three months later due to progressive disease. CONCLUSION: HAL is a special type of NSCLC. The surgical treatment of HAL in the limited stage can achieve long-term survival, but most of them were in the advanced stage when they were found, and the prognosis was poor, which requires multidisciplinary comprehensive treatment.

2.
Biomolecules ; 14(7)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39062465

RESUMEN

Safe and eco-friendly preservatives are crucial to preventing food spoilage and illnesses, as foodborne diseases caused by pathogens result in approximately 600 million cases of illness and 420,000 deaths annually. ε-Poly-L-lysine (ε-PL) is a novel food preservative widely used in many countries. However, its commercial application has been hindered by high costs and low production. In this study, ε-PL's biosynthetic capacity was enhanced in Streptomyces albulus WG608 through metabolic engineering guided by multi-omics techniques. Based on transcriptome and metabolome data, differentially expressed genes (fold change >2 or <0.5; p < 0.05) and differentially expressed metabolites (fold change >1.2 or <0.8) were separately subjected to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The integrative analysis of transcriptome, metabolome, and overexpression revealed the essential roles of isocitrate lyase, succinate dehydrogenase, flavoprotein subunit, diaminopimelate dehydrogenase, polyphosphate kinase, and polyP:AMP phosphotransferase in ε-PL biosynthesis. Subsequently, a strain with enhanced ATP supply, L-lysine supply, and ε-PL synthetase expression was constructed to improve its production. Finally, the resulting strain, S. albulus WME10, achieved an ε-PL production rate of 77.16 g/L in a 5 L bioreactor, which is the highest reported ε-PL production to date. These results suggest that the integrative analysis of the transcriptome and metabolome can facilitate the identification of key pathways and genetic elements affecting ε-PL synthesis, guiding further metabolic engineering and thus significantly enhancing ε-PL production. The method presented in this study could be applicable to other valuable natural antibacterial agents.


Asunto(s)
Ingeniería Metabólica , Polilisina , Streptomyces , Streptomyces/metabolismo , Streptomyces/genética , Ingeniería Metabólica/métodos , Polilisina/biosíntesis , Polilisina/metabolismo , Metaboloma , Transcriptoma , Metabolómica/métodos , Multiómica
3.
Molecules ; 29(14)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39064951

RESUMEN

Due to a wide band gap and large exciton binding energy, zinc oxide (ZnO) is currently receiving much attention in various areas, and can be prepared in various forms including nanorods, nanowires, nanoflowers, and so on. The reliability of ZnO produced by a single dopant is unstable, which in turn promotes the development of co-doping techniques. Co-doping is a very promising technique to effectively modulate the optical, electrical, magnetic, and photocatalytic properties of ZnO, as well as the ability to form various structures. In this paper, the important advances in co-doped ZnO nanomaterials are summarized, as well as the preparation of co-doped ZnO nanomaterials by using different methods, including hydrothermal, solvothermal, sol-gel, and acoustic chemistry. In addition, the wide range of applications of co-doped ZnO nanomaterials in photocatalysis, solar cells, gas sensors, and biomedicine are discussed. Finally, the challenges and future prospects in the field of co-doped ZnO nanomaterials are also elucidated.

4.
Nanomaterials (Basel) ; 14(14)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39057910

RESUMEN

In this work, zinc oxide (ZnO)/granular activated carbon (GAC) composites at different ZnO concentrations (0.25M-ZnO@GAC, 0.5M-ZnO@GAC, and 0.75M-ZnO@GAC) were prepared by an in-situ hydrothermal method and demonstrated synergistic photocatalytic degradation and adsorption of rhodamine B (RhB). The thermal stability, morphological structure, elemental composition, crystallographic structure, and textural properties of developed catalysts were characterized by thermal gravimetric analysis (TGA/DTG), scanning electron microscopy equipped with energy dispersive-x-ray (SEM-EDS), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) analysis. The successful loading of ZnO onto GAC was confirmed by SEM-EDS and XRD analysis. The BET surface areas of GAC, 0.25M-ZnO@GAC, 0.5M-ZnO@GAC, and 0.75M-ZnO@GAC were 474 m2/g, 450 m2/g, 453 m2/g, and 421 m2/g, respectively. The decrease in GAC could be attributed to the successful loading of ZnO on the GAC surface. Notably, 0.5M-ZnO@GAC exhibited the best photocatalytic degradation efficiency of 82% and 97% under UV-A and UV-C light over 120 min, attributed to improved crystallinity and visible light absorption. The photocatalytic degradation parameters revealed that lowering the RhB concentration and raising the catalyst dosage and pH beyond the point of zero charge (PZC) would favor the RhB degradation. Photocatalytic reusability was demonstrated over five cycles. Scavenger tests revealed that the hydroxyl radicals (•OH), superoxide radicals (O2-•), and photoinduced hole (h+) radicals play a major role during the RhB degradation process. Based on the TOC results, the RhB mineralization efficiency of 79.1% was achieved by 0.5M-ZnO@GAC. Additionally, GAC exhibited a strong adsorptive performance towards RhB, with adsorption capacity and the RhB removal of 487.1 mg/g and 99.5% achieved within 90 min of equilibrium time. The adsorption characteristics were best described by pseudo-second-order kinetics, suggesting chemical adsorption. This research offers a new strategy for the development of effective photocatalyst materials with potential for wider wastewater treatment applications.

5.
Cancer Innov ; 3(3): e112, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38947760

RESUMEN

Background: Pulmonary sarcomatoid carcinoma (PSC) is a rare and aggressive subtype of non-small cell lung cancer (NSCLC), characterized by the presence of epithelial and sarcoma-like components. The molecular and immune landscape of PSC has not been well defined. Methods: Multiomics profiling of 21 pairs of PSCs with matched normal lung tissues was performed through targeted high-depth DNA panel, whole-exome, and RNA sequencing. We describe molecular and immune features that define subgroups of PSC with disparate genomic and immunogenic features as well as distinct clinical outcomes. Results: In total, 27 canonical cancer gene mutations were identified, with TP53 the most frequently mutated gene, followed by KRAS. Interestingly, most TP53 and KRAS mutations were earlier genomic events mapped to the trunks of the tumors, suggesting branching evolution in most PSC tumors. We identified two distinct molecular subtypes of PSC, driven primarily by immune infiltration and signaling. The Immune High (IM-H) subtype was associated with superior survival, highlighting the impact of immune infiltration on the biological and clinical features of localized PSCs. Conclusions: We provided detailed insight into the mutational landscape of PSC and identified two molecular subtypes associated with prognosis. IM-H tumors were associated with favorable recurrence-free survival and overall survival, highlighting the importance of tumor immune infiltration in the biological and clinical features of PSCs.

6.
J Colloid Interface Sci ; 675: 1-13, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38964120

RESUMEN

Birnessite-type MnO2 (δ-MnO2) exhibits great potential as a cathode material for aqueous zinc-ion batteries (AZIBs). However, the structural instability and sluggish reaction kinetics restrict its further application. Herein, a unique protons intercalation strategy was utilized to simultaneously modify the interlayer environment and transition metal layers of δ-MnO2. The intercalated protons directly form strong O  H bonds with the adjacent oxygens, while the increased H2O molecules also establish a hydrogen bond network (O  H···O) between H2O molecules or bond with adjacent oxygens. Based on the Grotthuss mechanism, these bondings ultimately enhance the stability of layered structures and facilitate the rapid diffusion of protons. Moreover, the introduction of protons induces numerous oxygen vacancies, reduces steric hindrance, and accelerates ion transport kinetics. Consequently, the protons intercalated δ-MnO2 (H-MnO2-x) demonstrates exceptional specific capacity of 401.7 mAh/g at 0.1 A/g and a fast-charging performance over 1000 cycles. Density functional theory analysis confirms the improved electronic conductivity and reduced diffusion energy barrier. Most importantly, electrochemical quartz crystal microbalance tests combining with ex-situ characterizations verify the inhibitory effect of the interlayer proton environment on basic zinc sulfate formation. Protons intercalation behavior provides a promising avenue for the development of MnO2 as well as other cathodes in AZIBs.

7.
BMC Plant Biol ; 24(1): 663, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992596

RESUMEN

BACKGROUND: The Bric-a-Brac/Tramtrack/Broad Complex (BTB) gene family plays essential roles in various biological processes in plants. These genes encode proteins that contain a conserved BTB domain, which is involved in protein-protein interactions and regulation of gene expression. However, there is no systematic reports on the BTB gene family in G.max. RESULTS: In total, 122 soybean BTB genes were identified, which were classified into four groups based on the phylogenetic analysis. Gene structures analysis indicated that the number of exon-intron in GmBTBs ranges from 0 to18. Cis-element analysis revealed that most GmBTB genes contained cis-elements related to an abiotic stress response. In addition, qRT-PCR analyses indicated that most GmBTBs are significantly up-regulated under salinity, drought, and nitrate stresses. They suggested their potential for targeted improvement of soybean response to multiple abiotic stresses and nitrate availability. CONCLUSION: These results provide valuable information for identifying the members of the GmBTB gene family in soybean and could provide a functional characterization of GmBTB genes in further research.


Asunto(s)
Glycine max , Familia de Multigenes , Filogenia , Proteínas de Plantas , Glycine max/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Genes de Plantas , Genoma de Planta , Perfilación de la Expresión Génica
8.
Artículo en Inglés | MEDLINE | ID: mdl-39019979

RESUMEN

BACKGROUND: Androgen signaling is central to prostate cancer and men's health. Prior data indicates that increasing body fat is unfavorable in the localized setting yet associated with favorable outcomes in men with metastatic disease. Understanding the biological links between adiposity and prostate cancer may optimize the therapeutic index with ASI. We hypothesized that host adiposity and androgen synthesis are linked to the efficacy and toxicity of ASI for men with metastatic castration-resistant prostate cancer (mCRPC). METHODS: A post-hoc analysis was done of NCT02703623 where men with mCRPC (n = 186) were treated for 8 weeks with abiraterone acetate, prednisone, and apalutamide (AAPA), and a satisfactory response was defined as a PSA decline >50%. Body composition was measured on baseline CT scans. Germline DNA WES was performed with a focus on variants in steroidogenic genes. Adipokine levels were measured in pre-treatment plasma. RESULTS: Germline polymorphisms in 3 genes involved in androgen synthesis (AKR1C3 rs12529, CYP17A1 rs6162, SRD5A2 rs523349) were associated with differences in body composition at baseline on ADT alone (prior to receipt of AAPA). Elevated subcutaneous adipose tissue index (SATi, p = 0.02), visceral adipose tissue index (VATi, p = 0.03), and BMI (p = 0.04) were associated with satisfactory response to AAPA. Leptin had positive correlation with VATi (r = 0.47) and SATi (r = 0.48). CONCLUSION: Inherited polymorphisms in androgen synthesis correlated with differences in body composition after exposure to ADT and warrant further investigation as candidate markers for body composition toxicity. Elevated subcutaneous and visceral adiposity were associated with improved response to ASI.

9.
Front Aging ; 5: 1432858, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39011027
10.
Sci Rep ; 14(1): 16300, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009605

RESUMEN

Adenoid cystic carcinoma (ACC) is a rare, usually slow-growing yet aggressive head and neck malignancy. Despite its clinical significance, our understanding of the cellular evolution and microenvironment in ACC remains limited. We investigated the intratumoral microbiomes of 50 ACC tumor tissues and 33 adjacent normal tissues using 16S rRNA gene sequencing. This allowed us to characterize the bacterial communities within the ACC and explore potential associations between the bacterial community structure, patient clinical characteristics, and tumor molecular features obtained through RNA sequencing. The bacterial composition in the ACC was significantly different from that in adjacent normal salivary tissue, and the ACC exhibited diverse levels of species richness. We identified two main microbial subtypes within the ACC: oral-like and gut-like. Oral-like microbiomes, characterized by increased diversity and abundance of Neisseria, Leptotrichia, Actinomyces, Streptococcus, Rothia, and Veillonella (commonly found in healthy oral cavities), were associated with a less aggressive ACC-II molecular subtype and improved patient outcomes. Notably, we identified the same oral genera in oral cancer and head and neck squamous cell carcinomas. In both cancers, they were part of shared oral communities associated with a more diverse microbiome, less aggressive tumor phenotype, and better survival that reveal the genera as potential pancancer biomarkers for favorable microbiomes in ACC and other head and neck cancers. Conversely, gut-like intratumoral microbiomes, which feature low diversity and colonization by gut mucus layer-degrading species, such as Bacteroides, Akkermansia, Blautia, Bifidobacterium, and Enterococcus, were associated with poorer outcomes. Elevated levels of Bacteroides thetaiotaomicron were independently associated with significantly worse survival and positively correlated with tumor cell biosynthesis of glycan-based cell membrane components.


Asunto(s)
Carcinoma Adenoide Quístico , Neoplasias de Cabeza y Cuello , Microbiota , ARN Ribosómico 16S , Humanos , Carcinoma Adenoide Quístico/microbiología , Carcinoma Adenoide Quístico/patología , Neoplasias de Cabeza y Cuello/microbiología , Neoplasias de Cabeza y Cuello/patología , Femenino , Masculino , Persona de Mediana Edad , ARN Ribosómico 16S/genética , Anciano , Adulto , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación
11.
Front Plant Sci ; 15: 1403841, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39011304

RESUMEN

The response of Hypoxia Inducible Gene Domain (HIGD) proteins to hypoxia plays a crucial role in plant development. However, the research on this gene family in soybean has been lacking. In this study, we aimed to identify and comprehensively analyze soybean HIGD genes using the Glycine max genome database. As a result, six GmHIGD genes were successfully identified, and their phylogeny, gene structures, and putative conserved motifs were analyzed in comparison to Arabidopsis and rice. Collinearity analysis indicated that the HIGD gene family in soybean has expanded to some extent when compared to Arabidopsis. Additionally, the cis-elements in the promoter regions of GmHIGD and the transcription factors potentially binding to these regions were identified. All GmHIGD genes showed specific responsiveness to submergence and hypoxic stresses. Expression profiling through quantitative real-time PCR revealed that these genes were significantly induced by PEG treatment in root tissue. Co-expressed genes of GmHIGD were primarily associated with oxidoreductase and dioxygenase activities, as well as peroxisome function. Notably, one of GmHIGD genes, GmHIGD3 was found to be predominantly localized in mitochondria, and its overexpression in Arabidopsis led to a significantly reduction in catalase activity compared to wild-type plants. These results bring new insights into the functional role of GmHIGD in terms of subcellular localization and the regulation of oxidoreductase activity.

12.
Bioresour Technol ; 407: 131123, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39029766

RESUMEN

ε-Poly-L-lysine (ε-PL) is an amino acid homopolymer with diverse potential applications in the food, pharmaceutical and cosmetic industries. To improve its biomanufacturing efficiency, strain engineering and bioprocess optimization were combined in this study. Firstly, a cocktail strain breeding strategy was employed to generate a ε-PL high-production mutant, Streptomyces albulus GS114, with enhanced L-lysine uptake capability. Subsequently, the L-lysine feeding conditions during fed-batch fermentation were systematically optimized to improve the L-lysine supply, resulting in ε-PL production reaching 73.1 ± 1.4 g/L in 5 L bioreactor. Finally, an engineered strain, S. albulus L2, with enhanced uptake capability and polymerization ability of L-lysine was constructed, achieving ε-PL production of 81.4 ± 5.2 g/L by fed-batch fermentation. This represents the highest reported production of ε-PL to date. This study provided an efficient production strategy for ε-PL and valuable insights into the high-value utilization of L-lysine.

13.
Artículo en Inglés | MEDLINE | ID: mdl-39047062

RESUMEN

Recently, metal-oxo clusters (MOCs) have attracted significant interest in fabricating nanoscale patterns in semiconductors via lithography. However, many MOCs are highly crystalline, making it difficult for them to form films and hindering subsequent nanopatterning processes. In this study, we developed a novel and simple method to enhance the film-forming ability of aromatic tetranuclear Sn-oxo clusters by adding additives. Theoretical calculations and Fourier-transform infrared (FTIR) analysis revealed the formation of intermolecular hydrogen bonds between the Sn-oxo clusters and additives, which induced a crystal-gel phase transition at -20 °C, thereby inhibiting the easy crystallization of the Sn-oxo clusters. High-quality and uniform thin films with surface roughness below 0.3 nm were prepared via spin coating. The obtained thin films exhibited good lithographic performance under deep ultraviolet (DUV), electron beam, and extreme-ultraviolet irradiation without a photo acid generator/photoinitiator, and 13- and 21 nm-wide line patterns were obtained on the films via electron-beam and extreme-ultraviolet lithographies. This study will pave the way for the further investigation of novel MOCs for advanced lithography and other thin-film applications.

14.
Cancer Innov ; 3(2): e121, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38946934

RESUMEN

Rhabdomyosarcoma (RMS) originates from primitive mesenchymal cells and is the most common soft tissue tumor in childhood. 18F-fluoro-deoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) has been reported to be valuable in RMS staging and risk stratification. Paratesticular RMS is a relatively uncommon form of RMS, most of which are of the embryonal histologic type. Paratesticular alveolar RMS is associated with aggressive behavior, high metastatic potential, and poor outcomes. To the best of our knowledge, 18F-FDG PET/CT imaging findings of paratesticular alveolar RMS have never been described. Here, we report on a 16-year-old boy's rare paratesticular alveolar RMS with multiple metastases and its findings on 18F-FDG PET/CT. This case also demonstrates the potential value of 18F-FDG PET/CT in RMS staging and treatment decisions, and may aid in the differential diagnosis.

15.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39000300

RESUMEN

Maize is an important crop used for food, feed, and fuel. Abiotic stress is an important factor affecting maize yield. The EPF/EPFL gene family encodes class-specific secretory proteins that play an important role in the response to abiotic stress in plants. In order to explore and utilize the EPF/EPFL family in maize, the family members were systematically identified, and their chromosomal localization, physicochemical properties, cis-acting element prediction in promoters, phylogenetic tree construction, and expression pattern analysis were carried out using bioinformatics techniques. A total of 18 ZmEPF/EPFL proteins were identified in maize, which are mostly alkaline and a small portion acidic. Subcellular localization results showed that ZmEPF6, ZmEPF12, and ZmEPFL2 are localized in the nucleus and cytoplasm. Analysis of cis-acting elements revealed that members of the ZmEPF/EPFL family contain regulatory elements such as light response, anoxic, low temperature, and hormone response regulatory elements. RT-qPCR results showed that these family members are indeed responding to cold stress and hormone treatments. These results of this study provide a theoretical basis for improving the abiotic stress resistance of maize in future research.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Filogenia , Proteínas de Plantas , Estrés Fisiológico , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Regiones Promotoras Genéticas
16.
Heliyon ; 10(12): e33438, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39027452

RESUMEN

Background: Pediatric pneumonia presents a significant global health challenge, particularly in low- and middle-income countries. This study aimed to investigate the incidence of pneumonia in preschool children in Urumqi and its association with indoor environmental factors. Methods: This case-control study collected data from December 2018 to December 2019 on 1522 preschool children in Urumqi (779 boys and 743 girls) who were diagnosed with pneumonia by a physician. A control group of children who had never had pneumonia was matched in a 1:1 ratio based on gender, age, and ethnicity. Using questionnaires, data were collected on children's general characteristics, passive smoking, types of housing, flooring materials, and indoor dampness, analyzing potential factors associated with the incidence of pediatric pneumonia. Results: Multivariate analysis revealed that cesarean birth (odds ratio [OR] = 1.27; 95 % confidence interval [95%CI] = 1.08-1.48), being an only child (OR = 1.32; 95%CI = 1.13-1.55), antibiotic treatment during the first year of life (OR = 2.51; 95%CI = 1.98-3.19), passive smoking during the mother's pregnancy (OR = 1.62; 95%CI = 1.24-2.13), living in multi-family apartment housing (OR = 1.64; 95%CI = 1.28-2.10) and other types of housing (OR = 1.47; 95%CI = 1.09-1.99), laminate flooring (OR = 1.31; 95%CI = 1.01-1.72), and tile/stone/cement flooring flooring (OR = 1.31; 95%CI = 1.06-1.61), and dampness in dwelling (during first year of mother's pregnancy) (OR = 1.30; 95%CI = 1.04-1.63) were risk factors for pediatric pneumonia. The use of fresh air filtration systems in children's residences (OR = 0.66; 95%CI = 0.50-0.86) was identified as a protective factor. Conclusion: This study underscores the importance of indoor environmental factors in the prevention of pediatric pneumonia. Public health strategies should consider these factors to reduce the incidence of pneumonia in children. Future research needs to be conducted over a broader geographical range and consider a more comprehensive range of factors influencing pediatric pneumonia.

17.
Front Cell Infect Microbiol ; 14: 1375874, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887493

RESUMEN

Background: The interplay between gut microbiota and metabolites in the early stages of sepsis-induced acute kidney injury (SA-AKI) is not yet clearly understood. This study explores the characteristics and interactions of gut microbiota, and blood and urinary metabolites in patients with SA-AKI. Methods: Utilizing a prospective observational approach, we conducted comparative analyses of gut microbiota and metabolites via metabolomics and metagenomics in individuals diagnosed with SA-AKI compared to those without AKI (NCT06197828). Pearson correlations were used to identify associations between microbiota, metabolites, and clinical indicators. The Comprehensive Antibiotic Resistance Database was employed to detect antibiotic resistance genes (ARGs), while Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways informed on metabolic processes and microbial resistance patterns. Results: Our study included analysis of four patients with SA-AKI and five without AKI. Significant disparities in bacterial composition were observed, illustrated by diversity indices (Shannon index: 2.0 ± 0.4 vs. 1.4 ± 0.6, P = 0.230; Simpson index: 0.8 ± 0.1 vs. 0.6 ± 0.2, P = 0.494) between the SA-AKI group and the non-AKI group. N6, N6, N6-Trimethyl-L-lysine was detected in both blood and urine metabolites, and also showed significant correlations with specific gut microbiota (Campylobacter hominis and Bacteroides caccae, R > 0, P < 0.05). Both blood and urine metabolites were enriched in the lysine degradation pathway. We also identified the citrate cycle (TCA cycle) as a KEGG pathway enriched in sets of differentially expressed ARGs in the gut microbiota, which exhibits an association with lysine degradation. Conclusions: Significant differences in gut microbiota and metabolites were observed between the SA-AKI and non-AKI groups, uncovering potential biomarkers and metabolic changes linked to SA-AKI. The lysine degradation pathway may serve as a crucial link connecting gut microbiota and metabolites.


Asunto(s)
Lesión Renal Aguda , Microbioma Gastrointestinal , Metabolómica , Metagenómica , Sepsis , Humanos , Lesión Renal Aguda/metabolismo , Sepsis/microbiología , Sepsis/orina , Masculino , Estudios Prospectivos , Metabolómica/métodos , Femenino , Persona de Mediana Edad , Metagenómica/métodos , Anciano , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Metaboloma , Orina/microbiología , Orina/química
18.
Transl Pediatr ; 13(5): 760-769, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38840684

RESUMEN

Background: In 2023, China witnessed an earlier and more widespread outbreak of Mycoplasma pneumoniae pneumonia (MPP). To address this situation, an online training program was designed to enhance the knowledge of MPP among pediatricians in Shanghai, China. Methods: An online training program on the diagnosis and treatment of MPP, guided by Kern's six-step approach, was developed by the Shanghai Pediatric Clinical Quality Control Center. A pre- and post-training survey was conducted using a 20-item self-administered questionnaire to investigate the pediatricians' knowledge of MPP. A linkage mechanism was established to match pretest/posttest questionnaires using personal identifiers. Paired t-tests and McNemar tests were performed to measure the differences, as appropriate, between pre- and post-training groups. A higher survey score indicated better knowledge. Results: There were 289 participants performed pre- and post-tests. The average age of the respondents was 38.7 years (standard deviation: 8.9). Over 80% of the participants were primary (32.5%) and intermediate (47.8%) pediatricians. Those from specialized hospitals accounted for the highest proportion (41.5%). The post-training group achieved significantly higher total scores than the pre-training group (91.3 vs. 67.7, t=22.48, P<0.001), regardless of the professional titles or hospital levels (all P<0.001). The accuracy rates of each question increased significantly in the post-training group (all P<0.001). Conclusions: The online training program effectively enhanced pediatricians' understanding of diagnosing and treating MPP. It is recommended to maintain continuous education and training targeting all healthcare providers.

19.
bioRxiv ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38826462

RESUMEN

Normal hematopoietic stem and progenitor cells (HSPCs) inherently accumulate somatic mutations and lose clonal diversity with age, processes implicated in the development of myeloid malignancies 1 . The impact of exogenous stressors, such as cancer chemotherapies, on the genomic integrity and clonal dynamics of normal HSPCs is not well defined. We conducted whole-genome sequencing on 1,032 single-cell-derived HSPC colonies from 10 patients with multiple myeloma (MM), who had undergone various chemotherapy regimens. Our findings reveal that melphalan treatment distinctly increases mutational burden with a unique mutation signature, whereas other MM chemotherapies do not significantly affect the normal mutation rate of HSPCs. Among these therapy-induced mutations were several oncogenic drivers such as TET2 and PPM1D . Phylogenetic analysis showed a clonal architecture in post-treatment HSPCs characterized by extensive convergent evolution of mutations in genes such as TP53 and PPM1D . Consequently, the clonal diversity and structure of post-treatment HSPCs mirror those observed in normal elderly individuals, suggesting an accelerated clonal aging due to chemotherapy. Furthermore, analysis of matched therapy-related myeloid neoplasm (t-MN) samples, which occurred 1-8 years later, enabled us to trace the clonal origin of t-MNs to a single HSPC clone among a group of clones with competing malignant potential, indicating the critical role of secondary mutations in dictating clonal dominance and malignant transformation. Our findings suggest that cancer chemotherapy promotes an oligoclonal architecture with multiple HSPC clones possessing competing leukemic potentials, setting the stage for the selective emergence of a singular clone that evolves into t-MNs after acquiring secondary mutations. These results underscore the importance of further systematic research to elucidate the long-term hematological consequences of cancer chemotherapy.

20.
Psych J ; 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38923405

RESUMEN

The current study aimed to investigate the impact of recreational gymnastics on executive function in Chinese preschoolers, with a focus on gymnastics potential to enhance core components of executive function. A total of 63 preschool children who received full-time education were randomly assigned to either an intervention group (N = 31, mean age = 66.27 months, SD = 3.12 months) or a control group (N = 32, mean age = 66.79 months, SD = 3.34 months). The intervention group engaged in recreational gymnastics for 60 min, three times a week for 12 weeks. Meanwhile, the control group continued with their typical outdoor activities at kindergarten and did not participate in any organized sports. The intervention program was primarily conducted through group play and was facilitated by teachers who underwent standardized training. Various simple and complex tasks were utilized to evaluate delay gratification (Snack delay and Wrapped gift), inhibitory control (Stop signal task and Circle drawing task), working memory (Letter memory task and Keep track task), and cognitive flexibility (Go/No-Go task and Dots task). The analysis of covariance revealed that the children who participated in the intervention outperformed the control group on most simple and complex executive function tasks. Specifically, these children demonstrated an enhanced ability to regulate persistent responses, process and update information, and manage high cognitive conflict. The findings of this investigation lend support to the hypothesis that moderate-intensity recreational gymnastics is an efficacious means of enhancing executive function in early childhood. Future research should employ a larger sample size, incorporate a long-term follow-up design, and utilize a multi-method approach to further substantiate the impact of moderate-intensity gymnastics on the executive function of young children, as well as to investigate its underlying mechanism and generalizability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...