Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Anal Methods ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39206535

RESUMEN

Lead ions (Pb2+) are a widely distributed and highly toxic heavy metal pollutant, which seriously threatens the environment, economy and human safety. Here, a label-free ratiometric fluorescent biosensor was constructed for Pb2+ detection using DNAzyme-driven target cycling and exonuclease III (Exo III)-mediated DNA cycling as a dual signal amplification strategy. The SYBR Green I (SGI) and N-methyl mesoporphyrin IX (NMM) used in this study are characterized by low cost, storage resistance, and short preparation time compared with conventional signaling probes labeled with fluorescent groups. Unlike the single-emission fluorescence strategy, monitoring the fluorescence intensity ratio of SGI and NMM can effectively reduce external interference to achieve accurate detection of Pb2+. DNAzyme structures on the surface of magnetic beads (MBs) can recognize Pb2+ and activate the target circulatory system to cleave single-stranded DNA (ssDNA). The ssDNA further initiated the Exo III-assisted DNA circulatory system to digest double-stranded DNA (dsDNA) and release guanine-rich G1. Finally, the fluorescence signals of SGI and NMM were weakened and enhanced, respectively. The sensing strategy achieved a wide linear range from 0.5 to 500 nM and a low limit of detection (LOD) of 26.4 pM. Furthermore, its anti-interference ability and potential applicability for Pb2+ detection in actual samples were verified. This work ingeniously combines the dual signal amplification strategy with the ratiometric sensing strategy constructed by structure-specific fluorescent dyes, which provides a promising method for constructing sensitive and accurate fluorescent biosensors.

2.
J Vis Exp ; (208)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38975789

RESUMEN

Lens epithelial cells (LECs) play multiple important roles in maintaining the homeostasis and normal function of the lens. LECs determine lens growth, development, size, and transparency. Conversely, dysfunctional LECs can lead to cataract formation and posterior capsule opacification (PCO). Consequently, establishing a robust primary LEC culture system is important to researchers engaged in lens development, biochemistry, cataract therapeutics, and PCO prevention. However, cultivating primary LECs has long presented challenges due to their limited availability, slow proliferation rate, and delicate nature. This study addresses these hurdles by presenting a comprehensive protocol for primary LEC culture. The protocol encompasses essential steps such as the formulation of an optimized culture medium, precise isolation of lens capsules, trypsinization techniques, subculture procedures, harvest protocols, and guidelines for storage and shipment. Throughout the culture process, cell morphology was monitored using phase-contrast microscopy. To confirm the authenticity of the cultured LECs, immunofluorescence assays were conducted to detect the presence and subcellular distribution of critical lens proteins, namely αA- and γ-crystallins. This detailed protocol equips researchers with a valuable resource for cultivating and characterizing primary LECs, enabling advancements in our comprehension of lens biology and the development of therapeutic strategies for lens-related disorders.


Asunto(s)
Células Epiteliales , Cristalino , Tripsina , Células Epiteliales/citología , Cristalino/citología , Animales , Ratones , Tripsina/química , Tripsina/metabolismo , Técnicas de Cultivo de Célula/métodos , Cultivo Primario de Células/métodos
3.
J Cell Immunol ; 6(2): 76-81, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38873034

RESUMEN

The NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome, crucial in the innate immune response, is linked to various human diseases. However, the effect of endogenous metabolites, like 4-hydroxynonenal (HNE), on NLRP3 inflammasome activity remains underexplored. Recent research highlights HNE's inhibitory role in NLRP3 inflammasome activation, shedding light on its potential as an endogenous regulator of inflammatory responses. Studies demonstrate that HNE blocks NLRP3 inflammasome-mediated pyroptosis and IL-1ß secretion. Additionally, covalent targeting emerges as a common mechanism for inhibiting NLRP3 inflammasome assembly, offering promising avenues for therapeutic intervention. Further investigation is needed to understand the impact of endogenous HNE on NLRP3 inflammasome activation, especially in settings where lipid peroxidation byproducts like HNE are produced. Understanding the intricate interplay between HNE and the NLRP3 inflammasome holds significant potential for unraveling novel therapeutic strategies for inflammatory disorders.

4.
J Nutr Biochem ; 129: 109636, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38561079

RESUMEN

The purpose of this study is to investigate if grape consumption, in the form of grape powder (GP), could protect against ultraviolet (UV)-induced cataract. Mice were fed with the regular diet, sugar placebo diet, or a grape diet (regular diet supplemented with 5%, 10%, and 15% GP) for 3 months. The mice were then exposed to UV radiation to induce cataract. The results showed that the GP diet dose-dependently inhibited UV-induced cataract and preserved glutathione pools. Interestingly, UV-induced Nrf2 activation was abolished in the groups on the GP diet, suggesting GP consumption may improve redox homeostasis in the lens, making Nrf2 activation unnecessary. For molecular target prediction, a total of 471 proteins regulated by GP were identified using Agilent Literature Search (ALS) software. Among these targets, the X-linked inhibitor of apoptosis (XIAP) was correlated with all of the main active ingredients of GP, including resveratrol, catechin, quercetin, and anthocyanins. Our data confirmed that GP prevented UV-induced suppression of XIAP, indicating that XIAP might be one of the critical molecular targets of GP. In conclusion, this study demonstrated that GP protected the lens from UV-induced cataract development in mice. The protective effects of GP may be attributed to its ability to improve redox homeostasis and activate the XIAP-mediated antiapoptotic pathway.


Asunto(s)
Catarata , Suplementos Dietéticos , Factor 2 Relacionado con NF-E2 , Rayos Ultravioleta , Vitis , Proteína Inhibidora de la Apoptosis Ligada a X , Animales , Ratones , Antocianinas/farmacología , Catarata/prevención & control , Catarata/metabolismo , Catarata/etiología , Glutatión/metabolismo , Cristalino/metabolismo , Cristalino/efectos de la radiación , Cristalino/efectos de los fármacos , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/metabolismo , Resveratrol/farmacología , Transducción de Señal/efectos de los fármacos , Rayos Ultravioleta/efectos adversos , Vitis/química , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo
5.
Toxicol Rep ; 12: 430-435, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38618137

RESUMEN

Oral delivery of chemotherapy drugs is the most favorable and preferred route of drug administration. However, because of poor solubility and/or permeability, most chemotherapy drugs are given by intravenous administration. Docetaxel (DTX) is a potent chemotherapy drug that inhibits microtubular depolymerization and is widely used to treat numerous cancers. DTX is highly lipophilic and insoluble in water; thus, 50% polysorbate 80, which may cause hypersensitivity reactions and reduce drug uptake by tumor tissue, is used in the commercial DTX injection to dissolve DTX. Maximum tolerated dose (MTD) and toxicity are important to determine parameters in preclinical studies and to predict human dose in clinical trials. However, MTD and toxicity of oral DTX formulations have not been studied although various oral DTX formulations have been reported. We have previously developed oral DTX granule and demonstrated its ability to inhibit tumor growth. In this study, we aimed to systemically measure MTD and tissue distribution and evaluate the toxicity of oral DTX granule in mice. Oral DTX granule showed sex differences in toxicity and absorption. The MTD of DTX granule was determined at 50 mg/kg for female mice and 25 mg/kg for male mice. However, female mice had higher tissue absorption than male mice. At a very high dose (400 mg/kg), oral DTX granule induced kidney damage but did not influence the liver and the lungs. The study provides the fundamental data for future preclinical studies and clinical application of oral DTX formulations for cancers.

6.
Mol Cancer ; 22(1): 204, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38093367

RESUMEN

Lung squamous cell carcinoma (LUSC) is associated with high mortality and limited targeted therapies. USP13 is one of the most amplified genes in LUSC, yet its role in lung cancer is largely unknown. Here, we established a novel mouse model of LUSC by overexpressing USP13 on KrasG12D/+; Trp53flox/flox background (KPU). KPU-driven lung squamous tumors faithfully recapitulate key pathohistological, molecular features, and cellular pathways of human LUSC. We found that USP13 altered lineage-determining factors such as NKX2-1 and SOX2 in club cells of the airway and reinforced the fate of club cells to squamous carcinoma development. We showed a strong molecular association between USP13 and c-MYC, leading to the upregulation of squamous programs in murine and human lung cancer cells. Collectively, our data demonstrate that USP13 is a molecular driver of lineage plasticity in club cells and provide mechanistic insight that may have potential implications for the treatment of LUSC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Animales , Humanos , Ratones , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Células Escamosas/patología , Linaje de la Célula , Pulmón/metabolismo , Neoplasias Pulmonares/patología , Proteasas Ubiquitina-Específicas
7.
Phytomedicine ; 119: 154974, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37523838

RESUMEN

BACKGROUND: The Chinese herbal prescription Cuyun Recipe (CYR) has been widely used to treat clinical infertility and has shown good efficacy. Animal experiments have shown that CYR can promote implantation in mice, however, the exact mechanism underlying the implantation has not been elucidated. PURPOSE: To investigate the effect and mechanism of CYR on regulating macrophage polarization and hypercoagulability during the peri-implantation period in mice with ovarian hyperstimulation. METHODS: An ovarian hyperstimulation mouse model was developed, followed by treatment with CYR. Mice were sacrificed on day (D)4.5, D6, or D8 of gestation. The number of implantation sites, the pathological changes of the uterus and ovaries were assessed. The polarization of monocytes/macrophages in the spleen and endometrium, the expression and localization of cytokines were further detected. Furthermore, analyses of hypercoagulable state of the blood were also performed. RESULTS: Treatment with CYR increased the average number of implantation sites, promoted angiogenesis in endometrial, and regulated monocytes/macrophages and the cytokine levels. Moreover, CYR downregulated the overexpression of D-dimer and fgl2 after ovarian hyperstimulation. CONCLUSION: CYR facilitates embryo implantation by alleviating ovarian hyperstimulation, promoting endometrial decidualization and angiogenesis, regulating macrophage polarization, and reversing the hypercoagulable state of the blood.


Asunto(s)
Implantación del Embrión , Trombofilia , Embarazo , Femenino , Ratones , Animales , Útero , Endometrio , Trombofilia/tratamiento farmacológico , Trombofilia/metabolismo , Trombofilia/patología , Macrófagos
8.
Front Physiol ; 14: 1198873, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37334049

RESUMEN

The follicle is the functional unit of the ovary, whereby ovarian development is largely dependent on the development of the follicles themselves. The activation, growth, and progression of follicles are modulated by a diverse range of factors, including reproductive endocrine system and multiple signaling pathways. The Hippo pathway exhibits a high degree of evolutionary conservation between both Drosophila and mammalian systems, and is recognized for its pivotal role in regulating cellular proliferation, control of organ size, and embryonic development. During the process of follicle development, the components of the Hippo pathway show temporal and spatial variations. Recent clinical studies have shown that ovarian fragmentation can activate follicles. The mechanism is that the mechanical signal of cutting triggers actin polymerization. This process leads to the disruption of the Hippo pathway and subsequently induces the upregulation of downstream CCN and apoptosis inhibitors, thereby promoting follicle development. Thus, the Hippo pathway plays a crucial role in both the activation and development of follicles. In this article, we focused on the development and atresia of follicles and the function of Hippo pathway in these processes. Additionally, the physiological effects of Hippo pathway in follicle activation are also explored.

9.
Exp Eye Res ; 233: 109521, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37277068

RESUMEN

Glutaredoxins (Grx1 and Grx2) are thiol-repair antioxidant enzymes that play vital roles in cellular redox homeostasis and various cellular processes. This study aims to evaluate the functions of the glutaredoxin (Grx) system, including glutaredoxin 1 (Grx1) and glutaredoxin 2 (Grx2), using Grx1/Grx2 double knockout (DKO) mice as a model. We isolated primary lens epithelial cells (LECs) from wild-type (WT) and DKO mice for a series of in vitro analyses. Our results revealed that Grx1/Grx2 DKO LECs exhibited slower growth rates, reduced proliferation, and aberrant cell cycle distribution compared to WT cells. Elevated levels of ß-galactosidase activity were observed in DKO cells, along with a lack of caspase 3 activation, suggesting that these cells may be undergoing senescence. Additionally, DKO LECs displayed compromised mitochondrial function, characterized by decreased ATP production, reduced expression levels of oxidative phosphorylation (OXPHOS) complexes III and IV, and increased proton leak. A compensatory metabolic shift towards glycolysis was observed in DKO cells, indicating an adaptive response to Grx1/Grx2 deficiency. Furthermore, loss of Grx1/Grx2 affected cellular structure, leading to increased polymerized tubulin, stress fiber formation, and vimentin expression in LECs. In conclusion, our study demonstrates that Grx1/Grx2 double deletion in LECs results in impaired cell proliferation, aberrant cell cycle progression, disrupted apoptosis, compromised mitochondrial function, and altered cytoskeletal organization. These findings underscore the importance of Grx1 and Grx2 in maintaining cellular redox homeostasis and the consequences of their deficiency on cellular structure and function. Further research is needed to elucidate the precise molecular mechanisms underlying these observations and to investigate potential therapeutic strategies targeting Grx1 and Grx2 for various physiological processes and oxidative-stress related diseases such as cataract.


Asunto(s)
Glutarredoxinas , Mitocondrias , Animales , Ratones , Células Epiteliales/metabolismo , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Oxidación-Reducción
10.
Front Chem ; 10: 996604, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36385982

RESUMEN

Growing evidence links oxidative stress to the development of a cataract and other diseases of the eye. Treatments for lens-derived diseases are still elusive outside of the standard surgical interventions, which still carry risks today. Therefore, a potential drug molecule OHPy2N2 was explored for the ability to target multiple components of oxidative stress in the lens to prevent cataract formation. Several pathways were identified. Here we show that the OHPy2N2 molecule activates innate catalytic mechanisms in primary lens epithelial cells to prevent damage induced by oxidative stress. This protection was linked to the upregulation of Nuclear factor erythroid-2-related factor 2 and downstream antioxidant enzyme for glutathione-dependent glutaredoxins, based on Western Blot methods. The anti-ferroptotic potential was established by showing that OHPy2N2 increases levels of glutathione peroxidase, decreases lipid peroxidation, and readily binds iron (II) and (III). The bioenergetics pathway, which has been shown to be negatively impacted in many diseases involving oxidative stress, was also enhanced as evidence by increased levels of Adenosine triphosphate product when the lens epithelial cells were co-incubated with OHPy2N2. Lastly, OHPy2N2 was also found to prevent oxidative stress-induced lens opacity in an ex vivo organ culture model. Overall, these results show that there are multiple pathways that the OHPy2N2 has the ability to impact to promote natural mechanisms within cells to protect against chronic oxidative stress in the eye.

11.
Genet Mol Biol ; 45(3): e20210419, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36098487

RESUMEN

Vascular hypo-responsiveness to vasopressors in patients with obstructive jaundice (OJ) is a common anesthetic event, which leads to perioperative complications and increased mortality. The cause of this clinical issue remains unclear. In this study, we estimated the actin cytoskeleton and arterial protein level in the artery of OJ patients by proteomic analysis. Ten patients with OJ due to bile duct diseases or pancreatic head carcinoma were enrolled, while another ten non-jaundice patients with chronic cholecystitis or liver hemangioma as the control group. Vascular reactivity to noradrenaline was measured before anesthesia on the day of surgery. Artery samples in adjacent tissues of removed tumor were collected and evaluated by 2-dimensional electrophoresis. Proteins with differential expression were detected by MALDI-TOF mass spectrometry with immunoblot confirmation. The results confirmed the phenomenon of vascular hypo-reactivity in OJ patients as suppressed aortic response to noradrenaline were existed in these patients. We also found that actin cytoskeleton and several actin-binding proteins were up- or down-regulated in the artery of OJ patients. These proteins changed in OJ patents might be the basic mechanism of vascular hypo-reactivity, further studies to uncover the role of these proteins in OJ is critical for clinical treatment of these patients.

12.
Hepatol Int ; 16(6): 1339-1352, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36123506

RESUMEN

BACKGROUND: Integration of HBV DNA into the human genome could progressively contribute to hepatocarcinogenesis. Both intrahepatic cholangiocarcinoma (ICC) and combined hepatocellular-cholangiocarcinoma (CHC) are known to be associated with HBV infection. However, the integration of HBV and mechanism of HBV-induced carcinogenesis in ICC and CHC remains unclear. METHODS: 41 patients with ICC and 20 patients with CHC were recruited in the study. We conducted HIVID analysis on these 61 samples to identify HBV integration sites in both the tumor tissues and adjacent non-tumor liver tissues. To further explore the effect of HBV integration on gene alteration, we selected paired tumors and adjacent non-tumor liver tissues from 3 ICC and 4 CHC patients for RNA-seq and WGS. RESULTS: We detected 493 HBV integration sites in ICC patients, of which 417 were from tumor samples and 76 were from non-tumor samples. And 246 HBV integration sites were detected in CHC patients, of which 156 were located in the genome of tumor samples and 90 were in non-tumor samples. Recurrent HBV integration events were detected in ICC including TERT, ZMAT4, MET, ANKFN1, PLXNB2, and in CHC like TERT, ALKBH5. Together with our established data of HBV-infected hepatocellular carcinoma, we found that HBV preferentially integrates into the specific regions which may affect the gene expression and regulation in cells and involved in carcinogenesis. We further performed genomic and transcriptomic sequencing of three ICC and four CHC patients, and found that HBV fragments could integrate near some important oncogene like TERT, causing large-scale genome variations on nearby genomic sequences, and at the same time changing the expression level of the oncogenes. CONCLUSION: Comparative analysis demonstrates numerous newly discovered mutational events in ICC and CHC resulting from HBV insertions in the host genome. Our study provides an in-depth biological and clinical insights into HBV-induced ICC and CHC.


Asunto(s)
Neoplasias de los Conductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Virus de la Hepatitis B/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Colangiocarcinoma/genética , Integración Viral/genética , Oncogenes , Carcinogénesis/genética , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/metabolismo , Conductos Biliares Intrahepáticos/patología
13.
J Invest Surg ; 35(6): 1368-1376, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35143736

RESUMEN

OBJECTIVE: To elucidate the impact of acute-phase protein serum amyloid A (aSAA) on microvascular invasion (MVI) and early recurrence in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). METHODS: HBV-related HCC patients (n = 192) undergoing liver resection were included in the study. The protein levels of aSAA were analyzed by immunohistochemical staining in 172 tumor specimens, and further detected via western blotting in HCC and their corresponding portal vein tumor thrombus (PVTT) (n = 20). Cox and logit regression analysis was performed. Exploratory subgroup analysis was used to balance the potential confounders. RESULTS: HBV-related HCC patients with high aSAA levels tended to have high HBV-DNA loads. Logit and Cox regression analyses revealed high expression of aSAA is an independent risk factor not only for MVI (OR 5.384, 95% CI 2.286-13.301, P < 0.001) but also for early recurrence (HR 6.040, 95% CI 1.970-18.540, P = 0.002), overall recurrence (HR 3.720, 95% CI 2.140-6.450, P < 0.001), and overall survival (HR 4.15, 95% CI 2.380-7.230, P < 0.001). Subgroup analysis showed that the effects of aSAA were consistent across all subgroups examined. Additionally, the aSAA protein level was significantly higher in PVTT than that in its corresponding tumor specimen. A high HBV-DNA level and large tumor size were the independent risk factors for early HCC recurrence in patients with high levels of aSAA. CONCLUSIONS: High expression of aSAA was an independent risk factor for MVI and early tumor recurrence in HBV-related HCC patients after liver resection. The aSAA protein level could thus be a promising biomarker for predicting MVI and early recurrence in these patients.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , ADN Viral , Hepatectomía/efectos adversos , Virus de la Hepatitis B , Humanos , Invasividad Neoplásica , Recurrencia Local de Neoplasia/diagnóstico , Recurrencia Local de Neoplasia/epidemiología , Recurrencia Local de Neoplasia/etiología , Pronóstico , Estudios Retrospectivos , Proteína Amiloide A Sérica
14.
Cancers (Basel) ; 15(1)2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36612196

RESUMEN

Ubiquitin-specific Peptidase 13 (USP13) is a deubiquitinating enzyme that regulates the stability or function of its substrate. USP13 is highly amplified in human ovarian cancer, and elevated expression of USP13 promotes tumorigenesis and metastasis of ovarian cancer. However, there is little known about USP13 post-translational modifications and their role in ovarian cancer. Here, we found that USP13 is phosphorylated at Thr122 in ovarian cancer cells. Phosphorylated Thr122 (pT122) on endogenous USP13 was observed in most human ovarian cancer cells, and the abundance of this phosphorylation was correlated to the total level of USP13. We further demonstrated that Casein kinase 2 (CK2) directly interacts with and phosphorylates USP13 at Thr122, which promotes the stability of USP13 protein. Finally, we showed that Threonine 122 is important for cell proliferation of ovarian cancer cells. Our findings may reveal a novel regulatory mechanism for USP13, which may lead to novel therapeutic targeting of USP13 in ovarian cancer.

15.
Front Cell Dev Biol ; 9: 605855, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33869168

RESUMEN

BACKGROUND: Cholestasis patients often suffer from pain desensitization, resulting in serious complications in perioperative period. This study was aim to investigate the mechanism of bilirubin in cholestasis mediating pain desensitization through 5-hydroxytryptamine 3A (5-HT3A ) receptor activation in spinal dorsal horn (SDH). METHODS: A cholestasis model was established by bile duct ligation (BDL) in rats. Pain thresholds of rats were measured after BDL or intrathecally injecting bilirubin in the presence or absence of agonist (mCPBG) and antagonists (ondansetron, bicuculline, or CGP55845). Expression of 5-HT3 receptors, and the affinity and binding mode of bilirubin to 5-HT3A receptor were determined. Effects of bilirubin on γ-aminobutyric acid (GABA) pathway and the interactions with 5-HT3A receptor were tested. RESULTS: Bilirubin was elevated significantly in both serum and CSF in BDL rats, accompanied with the up-regulation of pain thresholds. Both of 5-HT3A receptor and GABA A receptor antagonists could reverse the increased pain threshold in BDL rats. Further, 5-HT3A and GABA A receptor expressions were increased in BDL rats or intervention with bilirubin. Molecular docking suggested that bilirubin entered the hydrophobic pocket pre-formed in 5-HT3A receptor with potential hydrogen bonding. Bilirubin also increased GABA concentrations in CSF and GABAergic spontaneous inhibitory postsynaptic current in spinal cord, and directly induced inward currents in HEK293 cells which were overexpressed 5-HT3A receptor by lentivirus. CONCLUSION: In conclusion, bilirubin induced pain desensitization in cholestasis by activating 5-HT3A receptor in spinal cord. The activation of 5-HT3A receptor might regulate pain threshold by acting on the GABA pathway.

16.
Cell Biol Toxicol ; 37(5): 679-693, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33788065

RESUMEN

Neonatal jaundice is a common symptom that occurs in neonates during the first month of their life and is generally divided into physiological and pathological subtypes. In serious cases, pathological neonatal jaundice frequently shows complications including seizures, cerebral palsy, and kernicterus. However, due to the unclear pathogenesis of pathological neonatal jaundice, effective drugs for this disease remain unsatisfied. In the present study, we first estimated the protective effects of folic acid (FA) on phenylhydrazine (PHA) or homocysteine (Hcy)-injected neonatal rats (2-3 days aged). Intriguingly, we found that FA significantly decreased the elevated total bilirubin (TBIL) and direct bilirubin (DBIL) concentration, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) activity in PHA- or Hcy-injected rats, indicating that FA improves liver functions. Meanwhile, our results also showed that the plasma Hcy level and N-homocysteinylation (N-Hcy) modification of albumin were significantly elevated in the jaundice rats, which were obviously reversed after FA administration. Furthermore, we identified a novel N-Hcy modification site K545 of human serum albumin (HSA) using LC-MS/MS, and the mutagenesis assay in HEK293 further validated these observations. Besides, we demonstrated that the N-Hcy modification of albumin functionally inhibits the bilirubin-binding ability of albumin without altering its protein level both in vitro and in vivo. Altogether, we highlight a mechanism that FA reduces the plasma Hcy level and thereby enhance the bilirubin-binding ability of albumin, which may provide a novel therapeutic strategy for the treatment of pathological neonatal jaundice.


Asunto(s)
Ácido Fólico , Ictericia , Anciano , Albúminas , Animales , Animales Recién Nacidos , Cromatografía Liquida , Células HEK293 , Humanos , Fenilhidrazinas/toxicidad , Ratas , Espectrometría de Masas en Tándem
17.
J Pharm Biomed Anal ; 194: 113780, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33280993

RESUMEN

PURPOSE: IR780 iodide, a promising near-infrared dye, is widely used to prepare nanoparticles as a theranostic agent for tumor imaging and therapy. However, there are no validated (bio)analytical methods to measure IR780 in nanoparticles and tissues in literature. The aim of this study is to develop and validate a new HPLC method to measure IR780 concentration in IR780 formulations as well as a new LC-MS/MS method to measure IR780 concentration in tissue samples, particularly in liver and lung. MATERIALS AND METHODS: IR780 granules that produced IR780 in situ self-assembled nanoparticles upon contact with water were prepared at two drug loadings (0.2 % and 0.37 %). An HPLC method was developed and validated to measure IR780 concentrations in IR780 granules and nanoparticles. Furthermore, a validated LC-MS/MS method was developed to measure IR780 in mouse liver and lung. Both HPLC method and LC-MS/MS method were validated in terms of specificity, stability, linearity, limit of detection, limit of quantification, accuracy and precision. RESULTS: Both HPLC method and LC-MS/MS method achieved the criteria for method validation. The HPLC method was accurate in the concentration range of 0.5-25 µg/mL. The measured drug loadings were 95 % of the theoretical drug loadings. The validated LC-MS/MS method can quantitatively measure the concentrations of IR780 in liver and lung. The linear range of the LC-MS/MS method was 1-1000 ng/mL for both liver and lung samples. IR780 granules showed the lung selectivity compared to IR780 solution at 2 h after oral administration. CONCLUSION: A validated HPLC method was developed to measure IR780 concentration in pharmaceutical formulations and a validated LC-MS/MS method was developed to measure IR780 concentration in tissues. These quantitative methods provide reliable measurements of IR780 in pharmaceutic formulations and biological samples, which will significantly facilitate the research of IR780 as a theranostic agent for cancer therapy and imaging.


Asunto(s)
Nanopartículas , Neoplasias , Animales , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Indoles , Ratones , Espectrometría de Masas en Tándem
18.
Int J Biol Sci ; 16(16): 3210-3220, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33162826

RESUMEN

Background: To explore the effects of postoperative adjuvant transarterial chemoembolization (PA-TACE) on the prognosis of HCC patients with Portal Vein Tumor Thrombus (PVTT) undergoing resection, and to develop a PA-TACE-related nomogram for predicting survival individually. Patients and Methods: Two hundred and ninety-three consecutive HCC patients with PVTT under R0 hepatectomy were recruited. Forty-seven cases had recurrence within one month after surgery. The remaining 246 cases consisted of 90 PA-TACE and 156 non-PA-TACE cases. COX regression analysis was performed for overall survival (OS) or recurrence-free survival (RFS) of these 246 cases, allowing the derivation of independent factors that were integrated into the nomogram. C-index, calibration curves, and risk stratification were performed to evaluate the performance and discriminative power of the nomograms. Results: In 246 patients without recurrence within one month after surgery, the OS and RFS for the PA-TACE group were significantly better than those for the non-PA-TACE group (P<0.0001, P<0.0001, respectively). After Cox regression analysis of OS or RFS, PA-TACE-related nomogram models were constructed. The C-index of the PA-TACE-related nomogram for OS and RFS was 0.72 and 0.73, respectively. Calibration curves revealed a good agreement between predictions and observations for the nomograms. Based on the nomogram-related risk stratification, Kaplan-Meier curves showed powerful discriminative ability. Conclusions: PA-TACE therapy improved the survival of HCC patients with PVTT undergoing hepatectomy. Accurate nomogram models were developed for predicting the individual survival and recurrence of these patients.


Asunto(s)
Carcinoma Hepatocelular/diagnóstico , Quimioembolización Terapéutica , Neoplasias Hepáticas/diagnóstico , Nomogramas , Trombosis/patología , Adulto , Carcinoma Hepatocelular/cirugía , Femenino , Hepatectomía , Humanos , Neoplasias Hepáticas/cirugía , Masculino , Persona de Mediana Edad , Vena Porta/patología , Pronóstico , Tasa de Supervivencia
19.
Sci Rep ; 10(1): 14994, 2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32929115

RESUMEN

The two-layer nanotubes consisted of carbon atoms on the outside layer and silicon atoms on the inside layer (CNT@SiNT) show a series of diversity in the shape transitions, for instance transforming from a circle through an oval to a rectangle. In this paper, we investigate this geometric change from three perspectives. In the first aspect, we stationary time, followed by quantize in the three-dimensional Z-axis of nanotubes. In the second aspect, we stationary Z-axis, followed by quantize in the time. Finally, we tracked distance of nanotubes flattest section and roundest section. At the stationary time, the overall image of different Z-axis distance distributions is similar to a plan view of multiple ice creams, regardless of whether CNT or SiNT are on the same Z-axis, their slice plans are circle or rectangle of the projection of the Z-axis section on the XOY plane. In the stationary Z-axis, the nanotubes periodically change from a circle to an oval, and then from an oval to a rectangle at different times. Most remarkably, the distance value of deformation which we track the flattest and roundest is a constant value, and in the same distance period, there is only one roundest circle and one longest rectangle at different section and different time. The geometric analysis provided theoretical reference for the preparation of various devices and semiconductor nano-heterojunctions.

20.
J Cell Commun Signal ; 13(1): 17-26, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29882088

RESUMEN

Postoperative acute renal failure in patients with obstructive jaundice is still a serious clinically complication, yet the mechanisms remain unclear. Renin-angiotensin-aldosterone system (RAAS) plays a central role in renal disease progression. Several lines of evidence shows that angiotensin-converting-enzyme-2 (ACE2), a main effector of RAAS acts as a local regulator for renal protection. This study aims to investigate the role of ACE2 and the effect of spironolactone treatment in obstructive jaundice(OJ) rats with renal injury. The rats with obstructive jaundice were established by bile duct ligation. Total bilirubin (TBil), serum creatinine (Scr) and the expression of ACE2 in kidney tissue of obstructive jaundice rats were detected. Comparatively, the expression of ACE2, renin, angiotensin II (AngII), angiotensin-(1-7)[Ang-(1-7)], aldosterone and intercellular adhesion molecule 1 (ICAM-1) in kidney tissues after spironolactone administration were measured by ELISA. Renal necrosis, inflammation and fibrosis induced by OJ were also measured by HE staining and Masson staining. The correlation between the expression of ACE2 and TBil, also the Scr level were investigated. With the time of common bile duct ligation prolonged, the TBil and Scr concentration increased while the expression of ACE2 in OJ rats' kidney tissues decreased. However, after spironolactone intervention, the expressions of ACE2, renin, AngII, Ang-(1-7), aldosterone and ICAM-1 in kidney tissue were changed, moreover, necrotic, inflammatory and fibrotic condition was also decreased. The relationship between the mRNA expression of ACE2 and TBil/Scr was observed to be moderately negatively correlated (r = -0.516, R2 = 0.292, P < 0.01), (r = -0.576, R2 = 0.332, P < 0.01), respectively. RAAS exerted an important effect in the renal damage caused by OJ. Spironolactone intervention not only improved the degree of renal fibrosis induced by OJ, but also upregulated the ACE2 expression in the kidney of OJ rats and rescued the renal function.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA