Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Materials (Basel) ; 17(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38998448

RESUMEN

Waterborne polyurethane asphalt emulsion (WPUA) is an environmentally friendly bituminous material, whose performance is highly dependent on the phase structure of the continuous phase. In this paper, WPUAs in the vicinity of phase inversion were prepared using waterborne polyurethane (WPU) and asphalt emulsion. The chemical structures, thermal stability, dynamic mechanical properties, phase-separated morphology and mechanical performance of WPUAs were studied. Fourier-transform infrared (FTIR) spectra revealed that there are no -NCO bonds in either the pure WPU or WPUAs. Moreover, the preparation of WPUA is a physical process. The addition of WPU weakens the thermal stability of asphalt emulsion. WPU improves the storage modulus of asphalt emulsion at lower and higher temperatures. The glass transition temperatures of the WPUA films are higher than that of the pure WPU film. When the WPU concentration increases from 30 wt% to 40 wt%, phase inversion occurs; that is, the continuous phase shifts from asphalt to WPU. The WPUA films have lower tensile strength and toughness than the pure WPU film. However, the elongations at break of the WPUA films are higher than that of the pure WPU film. Both the tensile strength and toughness of the WPUA films increase with the WPU concentration. Due to the occurrence of phase inversion, the elongation at break, tensile strength and toughness of the WPUA film containing 30 wt% WPU are increased by 29%, 250% and 369%, respectively, compared to the film with 40 wt% WPU.

2.
J Immunol ; 213(2): 187-203, 2024 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-38829131

RESUMEN

The RING finger (RNF) family, a group of E3 ubiquitin ligases, plays multiple essential roles in the regulation of innate immunity and resistance to viral infection in mammals. However, it is still unclear whether RNF proteins affect the production of IFN-I and the replication of avian influenza virus (AIV) in ducks. In this article, we found that duck RNF216 (duRNF216) inhibited the duRIG-I signaling pathway. Conversely, duRNF216 deficiency enhanced innate immune responses in duck embryonic fibroblasts. duRNF216 did not interacted with duRIG-I, duMDA5, duMAVS, duSTING, duTBK1, or duIRF7 in the duck RIG-I pathway. However, duRNF216 targeted duTRAF3 and inhibited duMAVS in the recruitment of duTRAF3 in a dose-dependent manner. duRNF216 catalyzed K48-linked polyubiquitination of duck TRAF3, which was degraded by the proteasome pathway. Additionally, AIV PB1 protein competed with duTRAF3 for binding to duRNF216 to reduce degradation of TRAF3 by proteasomes in the cytoplasm, thereby slightly weakening duRNF216-mediated downregulation of IFN-I. Moreover, although duRNF216 downregulated the IFN-ß expression during virus infection, the expression level of IFN-ß in AIV-infected duck embryonic fibroblasts overexpressing duRNF216 was still higher than that in uninfected cells, which would hinder the viral replication. During AIV infection, duRNF216 protein targeted the core protein PB1 of viral polymerase to hinder viral polymerase activity and viral RNA synthesis in the nucleus, ultimately strongly restricting viral replication. Thus, our study reveals a new mechanism by which duRNF216 downregulates innate immunity and inhibits AIV replication in ducks. These findings broaden our understanding of the mechanisms by which the duRNF216 protein affects AIV replication in ducks.


Asunto(s)
Patos , Inmunidad Innata , Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Transducción de Señal , Ubiquitina-Proteína Ligasas , Replicación Viral , Animales , Patos/inmunología , Patos/virología , Replicación Viral/inmunología , Transducción de Señal/inmunología , Gripe Aviar/inmunología , Gripe Aviar/virología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/fisiología , Inmunidad Innata/inmunología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/inmunología , Fibroblastos/inmunología , Fibroblastos/virología , Proteínas Aviares/inmunología , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Ubiquitinación , Proteína 58 DEAD Box/metabolismo , Proteína 58 DEAD Box/inmunología
3.
Cardiovasc Res ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842387

RESUMEN

BACKGROUND: Atherosclerosis is a leading cause of cardiovascular morbidity and mortality. Atherosclerotic lesions show increased levels of proteins associated with the fibroblast growth factor receptor (FGFR) pathway. However, the functional significance and mechanisms governed by FGFR signaling in atherosclerosis are not known. In the present study, we investigated FGFR1 signaling in atherosclerosis development and progression. METHODS AND RESULTS: Examination of human atherosclerotic lesions and aortas of Apoe-/- mice fed a high-fat diet (HFD) showed increased levels of FGFR1 in macrophages. We deleted myeloid-expressed Fgfr1 in Apoe-/- mice and showed that Fgfr1 deficiency reduces atherosclerotic lesions and lipid accumulations in both male and female mice upon HFD feeding. These protective effects of myeloid Fgfr1 deficiency were also observed when mice with intact FGFR1 were treated with FGFR inhibitor AZD4547. To understand the mechanistic basis of this protection, we harvested macrophages from mice and show that FGFR1 is required for macrophage inflammatory responses and uptake of oxidized LDL. RNA sequencing showed that FGFR1 activity is mediated through phospholipase-C-gamma (PLCγ) and the activation of nuclear factor-κB (NF-κB) but is independent of FGFR substrate 2. CONCLUSION: Our study provides evidence of a new FGFR1-PLCγ- NF-κB axis in macrophages in inflammatory atherosclerosis, supporting FGFR1 as a potentially therapeutic target for atherosclerosis-related diseases.

4.
Front Endocrinol (Lausanne) ; 15: 1362428, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38841298

RESUMEN

Background: Osteoporosis (OP) and cardiovascular disease (CVD) are major global public health issues, especially exacerbated by the challenges of an aging population. As these problems intensify, the associated burden on global health is expected to increase significantly. Despite extensive epidemiological investigations into the potential association between OP and CVD, establishing a clear causal relationship remains elusive. Methods: Instrumental variables were selected from summary statistics of the IEU GWAS database. Five different components of BMD (heel BMD, LS BMD, FA BMD, FN BMD, and TB BMD) were used as OP phenotypes. CHD, MI, and stroke were selected to represent CVD. Multiple analysis methods were used to evaluate the causal relationship between CVD and OP comprehensively. In addition, sensitivity analyses(Cochran's Q test, MR-Egger intercept test, and "leave one out" analysis) were performed to verify the reliability of the results. Results: The MR showed a significant causal relationship between CHD on heel BMD and TB BMD; in the reverse analysis, there was no evidence that OP has a significant causal effect on CVD. The reliability of the results was confirmed through sensitivity analysis. Conclusion: The study results revealed that CHD was causally associated with Heel BMD and TB BMD, while in the reverse MR analysis, the causal relationship between OP and CVD was not supported. This result posits CHD as a potential etiological factor for OP and prompts that routine bone density assessment at traditional sites (forearm, femoral neck, lumbar spine) using DAX may inadequately discern underlying osteoporosis issues in CHD patients. The recommendation is to synergistically incorporate heel ultrasound or DAX for total body bone density examinations, ensuring clinical diagnostics are both precise and reliable. Moreover, these findings provide valuable insights for public health, contributing to the development of pertinent prevention and treatment strategies.


Asunto(s)
Densidad Ósea , Enfermedad Coronaria , Análisis de la Aleatorización Mendeliana , Osteoporosis , Humanos , Osteoporosis/genética , Osteoporosis/epidemiología , Enfermedad Coronaria/genética , Enfermedad Coronaria/epidemiología , Femenino , Estudio de Asociación del Genoma Completo , Masculino , Persona de Mediana Edad
5.
ACS Omega ; 9(22): 23917-23926, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38854574

RESUMEN

Considering the alarming frequency of coal mine gas disasters globally, there is an urgent need to develop efficient gas control technologies to ensure mining safety. This study focuses on the problem of high peak gas emission restriction in the process of coal roadway tunneling in outburst coal seams, taking the No. 15 outburst coal seam of the Pingshu Coal Mine as the research object. Based on coal sample testing analysis and the application of CO2 gas fracturing (CO2-Frac) in coal mines, a comprehensive evaluation was conducted on pore-fracture structure alteration and homogenization gas emission effect induced by CO2-Frac, providing technical solutions for coal mine safety production. The results are as follows: (1) CO2-Frac induces fracture propagation and the development of three types of fracture structures: Tri-Wing Fracture, Damage Markers, and Coal Matrix Fragmentation. (2) Following CO2-Frac at 150 MPa, the pore volume and average diameter of pores in the 100-10,000 nm range increased by 128% and 61%, respectively, compared to the pre-CO2-Frac state. (3) During the excavation period, continuous monitoring of the airflow for 3 days showed a significant homogenization of gas emission, with a maximum value of 0.450% and a variance value of 0.0031, indicating a reduction of 31% and 68%, respectively. These results reveal several key findings: The pore-fracture structure alteration enhances gas diffusion and permeation, providing high-speed pathways for gas migration, resulting in a substantial increase in gas extraction efficiency. During coal cutting, the modified coal exhibits homogenized gas emission, eliminating the high peak phenomenon and achieving safe and efficient mining. These findings demonstrate that CO2-Frac has broad potential in gas emission homogenization for widespread application in coal mines with similar gas geological conditions.

6.
Bioorg Chem ; 148: 107434, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38744168

RESUMEN

Azaphilones represent a particular group of fascinating pigments from fungal source, with easier industrialization and lower cost than the traditional plant-derived pigments, and they also display a wide range of pharmacological activities. Herein, 28 azaphilone analogs, including 12 new ones, were obtained from the fermentation culture of a marine fungus Penicillium sclerotium UJNMF 0503. Their structures were elucidated by MS, NMR and ECD analyses, together with NMR and ECD calculations and biogenetic considerations. Among them, compounds 1 and 2 feature an unusual natural benzo[d][1,3]dioxepine ring embedded with an orthoformate unit, while 3 and 4 represent the first azaphilone examples incorporating a novel rearranged 5/6 bicyclic core and a tetrahydropyran ring on the side chain, respectively. Our bioassays revealed that half of the isolates exhibited neuroprotective potential against H2O2-induced injury on RSC96 cells, while compound 13 displayed the best rescuing capacity toward the cell viability by blocking cellular apoptosis, which was likely achieved by upregulating the PI3K/Akt signaling pathway.


Asunto(s)
Apoptosis , Benzopiranos , Relación Dosis-Respuesta a Droga , Peróxido de Hidrógeno , Fármacos Neuroprotectores , Penicillium , Fosfatidilinositol 3-Quinasas , Pigmentos Biológicos , Proteínas Proto-Oncogénicas c-akt , Apoptosis/efectos de los fármacos , Penicillium/química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/aislamiento & purificación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Fosfatidilinositol 3-Quinasas/metabolismo , Pigmentos Biológicos/farmacología , Pigmentos Biológicos/química , Pigmentos Biológicos/aislamiento & purificación , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/antagonistas & inhibidores , Estructura Molecular , Benzopiranos/farmacología , Benzopiranos/química , Benzopiranos/aislamiento & purificación , Relación Estructura-Actividad , Animales , Supervivencia Celular/efectos de los fármacos , Ratas , Transducción de Señal/efectos de los fármacos
7.
Nat Prod Res ; : 1-10, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38577968

RESUMEN

Two heterodimers including a clovane-phenylpropanoid hybrid (1) and a clovane-menthane hybrid (2), five linear sesquiterpenoids incorporating a tetrahydrofuran ring (3-6 & 8), and four steroids (7 & 9-11), were separated from the ethanolic extract of a well-known aromatic and medicinal herb Eupatorium fortunei. Their structures were characterised by detailed analyses of spectroscopic data and comparison with known analogues, with seven (1-7) of them being described for the first time. The hybrids 1 and 2 represent the first examples of clovane type sesquiterpenoids hybridising with other class of natural products, and compounds 3-6 and 8 are first linear sesquiterpenyl constituents reported from the title species. All the isolates were evaluated for their inhibitory effect on the NO production induced by LPS in murine RAW264.7 macrophage cells, and 1, 7, 10 and 11 exhibited moderate activity with IC50 values in the range of 24.4-43.5 µM.

8.
J Immunol ; 212(9): 1479-1492, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38477617

RESUMEN

During avian influenza virus (AIV) infection, host defensive proteins promote antiviral innate immunity or antagonize viral components to limit viral replication. UFM1-specific ligase 1 (UFL1) is involved in regulating innate immunity and DNA virus replication in mammals, but the molecular mechanism by which chicken (ch)UFL1 regulates AIV replication is unclear. In this study, we first identified chUFL1 as a negative regulator of AIV replication by enhancing innate immunity and disrupting the assembly of the viral polymerase complex. Mechanistically, chUFL1 interacted with chicken stimulator of IFN genes (chSTING) and contributed to chSTING dimerization and the formation of the STING-TBK1-IRF7 complex. We further demonstrated that chUFL1 promoted K63-linked polyubiquitination of chSTING at K308 to facilitate chSTING-mediated type I IFN production independent of UFMylation. Additionally, chUFL1 expression was upregulated in response to AIV infection. Importantly, chUFL1 also interacted with the AIV PA protein to inhibit viral polymerase activity. Furthermore, chUFL1 impeded the nuclear import of the AIV PA protein and the assembly of the viral polymerase complex to suppress AIV replication. Collectively, these findings demonstrate that chUFL1 restricts AIV replication by disrupting the viral polymerase complex and facilitating type I IFN production, which provides new insights into the regulation of AIV replication in chickens.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Interferón Tipo I , Ubiquitina-Proteína Ligasas , Replicación Viral , Animales , Pollos/genética , Inmunidad Innata , Virus de la Influenza A/metabolismo , Virus de la Influenza A/fisiología , Gripe Aviar/metabolismo , Nucleotidiltransferasas , Replicación Viral/genética , Ubiquitina-Proteína Ligasas/metabolismo
9.
Chem Biodivers ; 21(4): e202400002, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38411310

RESUMEN

Seven new polyketides including three chromone derivatives (1-3) and four linear ones incorporating a tetrahydrofuran ring (4-7), along with three known compounds (8-10), were obtained from the fermentation of an endophytic fungus (Chaetomium sp. UJN-EF006) isolated from the leaves of Vaccinium bracteatum. The structures of these fungal metabolites have been elucidated by spectroscopic means including MS, NMR and electronic circular dichroism. A preliminary anti-inflammatory screening with the lipopolysaccharide (LPS) induced RAW264.7 cell model revealed moderate NO production inhibitory activity for compounds 1 and 4. In addition, the expression of three LPS-induced inflammatory factors IL-6, iNOS and COX-2 was also blocked by 1 and 4.


Asunto(s)
Chaetomium , Policétidos , Vaccinium myrtillus , Chaetomium/química , Policétidos/química , Lipopolisacáridos/farmacología , Estructura Molecular
10.
J Asian Nat Prod Res ; 26(6): 690-698, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38192122

RESUMEN

Two neolignan glycosides including a new one (1), along with seven iridoid glycosides (3 - 9) and nine flavonoid glycosides (10 - 18), were isolated from the leaves of Vaccinium bracteatum. Their structures were established mainly on the basis of 1D/2D NMR and ESIMS analyses, as well as comparison to known compounds in the literature. The structure of 1 with absolute stereochemistry was also confirmed by chemical degradation and ECD calculation. Selective compounds showed antiradical activity against ABTS and/or DPPH. Moreover, several isolates also suppressed the production of ROS in RAW264.7 cells and exerted neuroprotective effect toward PC12 cells.


Asunto(s)
Flavonoides , Glicósidos , Lignanos , Hojas de la Planta , Hojas de la Planta/química , Flavonoides/química , Flavonoides/farmacología , Flavonoides/aislamiento & purificación , Animales , Ratones , Células PC12 , Glicósidos/química , Glicósidos/farmacología , Glicósidos/aislamiento & purificación , Estructura Molecular , Lignanos/química , Lignanos/farmacología , Lignanos/aislamiento & purificación , Ratas , Células RAW 264.7 , Vaccinium/química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/aislamiento & purificación , Iridoides/química , Iridoides/farmacología , Iridoides/aislamiento & purificación , Glicósidos Iridoides/química , Glicósidos Iridoides/farmacología , Glicósidos Iridoides/aislamiento & purificación , Especies Reactivas de Oxígeno , Picratos/farmacología
11.
Nat Commun ; 15(1): 249, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38172560

RESUMEN

Hydrogels have been designed to react to many different stimuli which find broad applications in tissue engineering and soft robotics. However, polymer networks bearing mechano-responsiveness, especially those displaying on-demand self-stiffening and self-softening behavior, are rarely reported. Here, we design a mechano-controlled biocatalytic system at the molecular level that is incorporated into hydrogels to regulate their mechanical properties at the material scale. The biocatalytic system consists of the protease thrombin and its inhibitor, hirudin, which are genetically engineered and covalently coupled to the hydrogel networks. The catalytic activity of thrombin is reversibly switched on by stretching of the hydrogels, which disrupts the noncovalent inhibitory interaction between both entities. Under cyclic tensile-loading, hydrogels exhibit self-stiffening or self-softening properties when substrates are present that can self-assemble to form new networks after being activated by thrombin or when cleavable peptide crosslinkers are constitutional components of the original network, respectively. Additionally, we demonstrate the programming of bilayer hydrogels to exhibit tailored shape-morphing behavior under mechanical stimulation. Our developed system provides proof of concept for mechanically controlled reversible biocatalytic processes, showcasing their potential for regulating hydrogels and proposing a biomacromolecular strategy for mechano-regulated soft functional materials.


Asunto(s)
Hidrogeles , Trombina , Hidrogeles/química , Péptidos , Polímeros/química
12.
Nat Chem ; 16(3): 446-455, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38052946

RESUMEN

Azobenzene has been widely explored as a photoresponsive element in materials science. Although some studies have investigated the force-induced isomerization of azobenzene, the effect of force on the rupture of azobenzene has not been explored. Here we show that the light-induced structural change of azobenzene can also alter its rupture forces, making it an ideal light-responsive mechanophore. Using single-molecule force spectroscopy and ultrasonication, we found that cis and trans para-azobenzene isomers possess contrasting mechanical properties. Dynamic force spectroscopy experiments and quantum-chemical calculations in which azobenzene regioisomers were pulled from different directions revealed that the distinct rupture forces of the two isomers are due to the pulling direction rather than the energetic difference between the two isomers. These mechanical features of azobenzene can be used to rationally control the macroscopic fracture behaviours of polymer networks by photoillumination. The use of light-induced conformational changes to alter the mechanical response of mechanophores provides an attractive way to engineer polymer networks of light-regulatable mechanical properties.

13.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 166997, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38142758

RESUMEN

Accumulating evidence highlights the key importance of innate immunity in heart hypertrophy and failure. Though stimulator of interferon genes (STING) is an integral innate immunity regulator, whether cardiomyocyte-derived STING driving cardiac hypertrophy and failure has rarely been explored, nor has its underlying mechanism been clarified. Herein, we addressed these two questions through several mouse experiments. Our results revealed that cardiac tissues from patients exhibiting cardiac hypertrophy markedly increased STING expression. Myocardial tissues of mice challenged with angiotensin II (Ang II) or transverse aortic constriction (TAC) also showed that STING was consistently upregulated and activated. Activation of STING by cGAMP or DMXAA resulted in cardiomyocyte hypertrophy in vitro, which was abolished by STING knockout. Furthermore, deleting or pharmacologically inhibiting STING attenuated cardiac hypertrophy and dysfunction in TAC or Ang II-treated mice. In contrast, mice with cardiomyocyte-specific STING activation developed cardiac hypertrophy and failure. Mechanistically, NF-κB signaling but not TBK1 or autophagy formation was implicated in STING -induced cardiac hypertrophy and failure. Collectively, we identified that STING-NF-κB axis mediated inflammatory response to drive cardiac hypertrophy-associated heart failure, highlighting its promise as a potential therapeutic target in clinical practice.


Asunto(s)
Insuficiencia Cardíaca , Miocitos Cardíacos , Animales , Humanos , Ratones , Angiotensina II/metabolismo , Cardiomegalia/genética , Cardiomegalia/metabolismo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , FN-kappa B/metabolismo
14.
Cell Death Dis ; 14(12): 790, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040691

RESUMEN

Aurora-A kinase interacting protein 1 (AURKAIP1) has been proved to take an intermediary role in cancer by functioning as a negative regulator of Aurora-A kinase. However, it remains unclear whether and how AURKAIP1 itself would directly engage in regulating malignancies. The expression levels of AURKAIP1 were detected in triple negative breast cancer (TNBC) by immunohistochemistry and western blots. The CCK8, colony formation assays and nude mouse model were conducted to determine cell proliferation whereas transwell and wound healing assays were performed to observe cell migration. The interaction of AURKAIP1 and DEAD-box helicase 5 (DDX5) were verified through co-immunoprecipitation and successively western blots. From the results, we found that AURKAIP1 was explicitly upregulated in TNBC, which was positively associated with tumor size, lymph node metastases, pathological stage and unfavorable prognosis. AURKAIP1 silencing markedly inhibited TNBC cell proliferation and migration in vitro and in vivo. AURKAIP1 directly interacted with and stabilized DDX5 protein by preventing ubiquitination and degradation, and DDX5 overexpression successfully reversed proliferation inhibition induced by knockdown of AURKAIP1. Consequently, AURKAIP1 silencing suppressed the activity of Wnt/ß-catenin signaling in a DDX5-dependent manner. Our study may primarily disclose the molecular mechanism by which AURKAIP1/DDX5/ß-catenin axis modulated TNBC progression, indicating that AURKAIP1 might serve as a therapeutic target as well as a TNBC-specific biomarker for prognosis.


Asunto(s)
Aurora Quinasa A , Neoplasias de la Mama Triple Negativas , Animales , Humanos , Ratones , Aurora Quinasa A/genética , Aurora Quinasa A/metabolismo , beta Catenina/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Mama Triple Negativas/patología , Vía de Señalización Wnt
15.
Research (Wash D C) ; 6: 0289, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38111678

RESUMEN

Triple-negative breast cancer (TNBC) is considered as the most hazardous subtype of breast cancer owing to its accelerated progression, enormous metastatic potential, and refractoriness to standard treatments. Long noncoding RNAs (lncRNAs) are extremely intricate in tumorigenesis and cancerous metastasis. Nonetheless, their roles in the initiation and augmentation of TNBC remain elusive. Here, in silico analysis and validation experiments were utilized to analyze the expression pattern of clinically effective lncRNAs in TNBC, among which a protective lncRNA LYPLAL1-DT was essentially curbed in TNBC samples and indicated a favorable prognosis. Gain- and loss-of-function assays elucidated that LYPLAL1-DT considerably attenuated the proliferative and metastatic properties along with epithelial-mesenchymal transition of TNBC cells. Moreover, forkhead box O1 (FOXO1) was validated to modulate the transcription of LYPLAL1-DT. Mechanistically, LYPLAL1-DT impinged on the malignancy of TNBC mainly by restraining the aberrant reactivation of the Wnt/ß-catenin signaling pathway, explicitly destabilizing and diminishing ß-catenin protein by interacting with heterogeneous nuclear ribonucleoprotein K (hnRNPK) and constricting the formation of the hnRNPK/ß-catenin complex. Conclusively, our present research revealed the anti-oncogenic effects of LYPLAL1-DT in TNBC, unraveling the molecular mechanisms of the FOXO1/LYPLAL1-DT/hnRNPK/ß-catenin signaling axis, which shed innovative light on the potential curative medicine of TNBC.

16.
Front Microbiol ; 14: 1301653, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38098674

RESUMEN

Duck Tembusu virus (DTMUV) is an emerging pathogen that poses a serious threat to the duck industry in China. Currently, polymerase chain reaction (PCR), quantitative PCR (qPCR) and reverse transcription loop-mediated isothermal amplification (RT-LAMP) are commonly used for DTMUV detection. However, these methods require complex steps and special equipment and easily cause false-positive results. Therefore, we urgently need to establish a simple, sensitive and specific method for the clinical field detection of DTMUV. In this study, we developed an RT-LAMP-based CRISPR-Cas12a assay targeting the C gene to detect DTMUV with a limited detection of 3 copies/µL. This assay was specific for DTMUV without cross-reaction with other common avian viruses and only required some simple pieces of equipment, such as a thermostat water bath and blue/UV light transilluminator. Furthermore, this assay showed 100% positive predictive agreement (PPA) and negative predictive agreement (NPA) relative to SYBR Green qPCR for DTMUV detection in 32 cloacal swabs and 22 tissue samples, supporting its application for clinical field detection.

17.
Mar Drugs ; 21(11)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37999417

RESUMEN

In our chemical investigation into Penicillium sp. UJNMF0740 derived from mangrove sediment, fourteen indole diterpene analogs, including four new ones, are purified by multiple chromatographic separation methods, with their structures being elucidated by the analyses of NMR, HR-ESIMS, and ECD data. The antibacterial and neuroprotective effects of these isolates were examined, and only compounds 6 and 9 exhibited weak antibacterial activity, while compounds 5, 8, and 10 showed protective effects against the injury of PC12 cells induced by 6-hydroxydopamine (6-OHDA). Additionally, compound 5 could suppress the apoptosis and production of reactive oxygen species (ROS) in 6-OHDA-stimulated PC12 cells as well as trigger the phosphorylation of PI3K and Akt. Taken together, our work enriches the structural diversity of indole diterpenes and hints that compounds of this skeleton can repress the 6-OHDA-induced apoptosis of PC12 cells via regulating the PI3K/Akt signaling pathway, which provides evidence for the future utilization of this fascinating class of molecules as potential neuroprotective agents.


Asunto(s)
Diterpenos , Fármacos Neuroprotectores , Penicillium , Ratas , Animales , Células PC12 , Proteínas Proto-Oncogénicas c-akt/metabolismo , Oxidopamina/toxicidad , Fosfatidilinositol 3-Quinasas/metabolismo , Penicillium/química , Especies Reactivas de Oxígeno/metabolismo , Apoptosis , Diterpenos/farmacología , Diterpenos/química , Indoles/farmacología , Indoles/química , Antibacterianos/farmacología , Fármacos Neuroprotectores/farmacología
18.
Appl Opt ; 62(17): 4474-4481, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37707139

RESUMEN

In this paper, temperature compensation of plastic optical fiber (POF) is studied and gold absorbability is utilized. Gold film is modified on the surface of POF by magnetron sputtering. The temperature output characteristics of different structures such as ordinary (POF-N), side-polished (POF-SP), U-shaped (POF-U), and narrow groove structure (POF-NGS) are tested, and the effects of gold film thickness, polishing area, and sputtering sequence on the temperature output characteristics are also investigated. The power change of the sensor at different temperatures is recorded. The experimental results show that when the temperature is between 25°C and 50°C and the sputtering gold film thickness is 50 nm, the temperature stabilities of POF-N, POF-U, POF-SP, and POF-NGS are 1.02 µW/°C, 0.77 µW/°C, 0.18 µW/°C, and 0.35 µW/°C, respectively. The compensation effect is enhanced as the gold film thickness increases. When the thickness is 100 nm, the temperature stability of POF-NGS is 0.06 µW/°C. The proposed temperature compensation method is competitive and straightforward.

19.
Mol Ther ; 31(10): 3084-3103, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37533255

RESUMEN

Hypertension is a primary modifiable risk factor for cardiovascular diseases, which often induces renal end-organ damage and complicates chronic kidney disease (CKD). In the present study, histological analysis of human kidney samples revealed that hypertension induced mtDNA leakage and promoted the expression of stimulator of interferon genes (STING) in renal epithelial cells. We used angiotensin II (AngII)- and 2K1C-treated mouse kidneys to elucidate the underlying mechanisms. Abnormal renal mtDNA packing caused by AngII promoted STING-dependent production of inflammatory cytokines, macrophage infiltration, and a fibrogenic response. STING knockout significantly decreased nuclear factor-κB activation and immune cell infiltration, attenuating tubule atrophy and extracellular matrix accumulation in vivo and in vitro. These effects delayed CKD progression. Immunoprecipitation assays and liquid chromatography-tandem mass spectrometry showed that STING and ACSL4 were directly combined at the D53 and K412 amino acids of ACSL4. Furthermore, STING induced renal inflammatory response and fibrosis through ACSL4-dependent ferroptosis. Last, inhibition of ACSL4 using small interfering RNA, rosiglitazone, or Fer-1 downregulated AngII-induced mtDNA-STING-dependent renal inflammation. These results suggest that targeting the STING/ACSL4 axis might represent a potential strategy for treating hypertension-associated CKD.

20.
Chin J Nat Med ; 21(7): 551-560, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37517822

RESUMEN

Phytochemical investigation on the ethanol extract of a well-known medicinal herb Leonurus japonicus, led to the separation of 18 labdane type diterpenoids (1-18). Through comprehensive spectroscopic analyses and quantum chemical calculations, these compounds were structurally characterized as six new interesting 5,5,5-di-spirocyclic ones (1-6), two new (7 and 8) and six known (13-18) interesting 6,5,5-di-spirocyclic ones, a new rare 14,15-dinor derivative (9), and three new ones incorporating a γ-lactone unit (10-12). An in vitro neuroprotective assay in RSC96 cells revealed that compounds 7 and 12 exhibited neuroprotective activity in a concentration-dependent way, comparable to the reference drug N-acetylcysteine.


Asunto(s)
Diterpenos , Leonurus , Plantas Medicinales , Espectroscopía de Resonancia Magnética , Leonurus/química , Diterpenos/farmacología , Diterpenos/química , Componentes Aéreos de las Plantas , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...