Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PeerJ ; 10: e13777, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35919403

RESUMEN

Rotational strip intercropping (RSI) of cereals and legumes has been developed and widely carried out to alleviate continuous cropping obstacles, to control erosion and to improve field use efficiency. In this study, a four-year fixed-field experiment was carried out in northeast China with three treatments: continuous cropping of maize, continuous cropping of peanuts and rotational strip intercropping of maize and peanut. The results show that crop rotation improved the main-stem height, branch number, lateral branch length, and yield and quality of peanuts; the yield was the highest in 2018, when it was increased by 39.5%. RSI improved the contents of total N, available N, total P, available P, total K and available K; the content of available N was the highest in 2018, with an increase of 70%. Rhizosphere soil urease and catalase activities were significantly increased and were the highest in 2017, reaching 183.13% and 91.21%, respectively. According to a high-throughput sequencing analysis, the rhizosphere soil bacterial richness and specific OTUs decreased in peanut rhizosphere soil, while the fungal increased. There were differences in the bacterial and fungal community structures; specifically, the abundance of Acidobacteria and Planctomycetes increased among bacteria and the abundance of beneficial microorganisms such as Ascomycota increased among fungi. In conclusion, rotational strip intercropping of maize and peanut increased the yield and quality of peanuts and conducive to alleviating the obstacles facing the continuous cropping of peanuts. Among then, soil physicochemical properties, enzyme activity and microbial diversity were significantly affected the yield of peanut.


Asunto(s)
Microbiota , Suelo , Suelo/química , Arachis , Agricultura/métodos , Zea mays , Bacterias
2.
BMC Microbiol ; 22(1): 14, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34996375

RESUMEN

BACKGROUND: Intercropping, a diversified planting pattern, increases land use efficiency and farmland ecological diversity. We explored the changes in soil physicochemical properties, nutrient uptake and utilization, and microbial community composition in wide-strip intercropping of maize and peanut. RESULTS: The results from three treatments, sole maize, sole peanut and intercropping of maize and peanut, showed that intercropped maize had a marginal advantage and that the nutrient content of roots, stems and grains in side-row maize was better than that in the middle row of intercropped maize and sole maize. The yield of intercropped maize was higher than that of sole cropping. The interaction between crops significantly increased soil peroxidase activity, and significantly decreased protease and dehydrogenase activities in intercropped maize and intercropped peanut. The diversity and richness of bacteria and fungi decreased in intercropped maize rhizosphere soil, whereas the richness of fungi increased intercropped peanut. RB41, Candidatus-udaeobacter, Stropharia, Fusarium and Penicillium were positively correlated with soil peroxidase activity, and negatively correlated with soil protease and dehydrogenase activities. In addition, intercropping enriched the functional diversity of the bacterial community and reduced pathogenic fungi. CONCLUSION: Intercropping changed the composition and diversity of the bacterial and fungal communities in rhizosphere soil, enriched beneficial microbes, increased the nitrogen content of intercropped maize and provided a scientific basis for promoting intercropping in northeastern China.


Asunto(s)
Agricultura/métodos , Arachis/crecimiento & desarrollo , Microbiota , Nutrientes/metabolismo , Zea mays/crecimiento & desarrollo , Arachis/metabolismo , Arachis/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , China , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo , Productos Agrícolas/microbiología , Enzimas/análisis , Enzimas/metabolismo , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Hongos/metabolismo , Nitrógeno/análisis , Nitrógeno/metabolismo , Nutrientes/análisis , Rizosfera , Suelo/química , Microbiología del Suelo , Zea mays/metabolismo , Zea mays/microbiología
3.
ISA Trans ; 61: 95-103, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26775089

RESUMEN

This paper deals with the critical issue in a wind energy conversion system (WECS) based on a direct-driven permanent magnet synchronous generator (PMSG): the rejection of lumped disturbance, including the system uncertainties in the internal dynamics and unknown external forces. To simultaneously track the motor speed in real time and capture the maximum power, a maximum power point tracking strategy is proposed based on active disturbance rejection control (ADRC) theory. In real application, system inertia, drive torque and some other parameters change in a wide range with the variations of disturbances and wind speeds, which substantially degrade the performance of WECS. The ADRC design must incorporate the available model information into an extended state observer (ESO) to compensate the lumped disturbance efficiently. Based on this principle, a model-compensation ADRC is proposed in this paper. Simulation study is conducted to evaluate the performance of the proposed control strategy. It is shown that the effect of lumped disturbance is compensated in a more effective way compared with the traditional ADRC approach.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...