Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 477: 135283, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39053072

RESUMEN

Microplastics (MPs) discharging into constructed wetlands pose risks to these ecosystems. Nevertheless, the perturbation of MPs to different types of macrophytes, which play important roles in purifying pollutants of wetlands, has not been fully elucidated. In this study, polystyrene MPs (PS-MPs) perturbation on nitrogen removal and sensory quality of surface flow constructed wetlands planted with emergent and submerged macrophytes were investigated. PS-MPs enhanced N removal efficiencies temporarily, whereas the N removal rate constants were declined as exposure time was prolonged. The NH4+-N removal rate constants declined by 25.78 % and 34.03 % in E and S groups respectively. The NO3--N removal rate constants declined by 22.13 % in the S groups. Denitrifiers including Thiobacillus, Rhodobacter, and Sulfuritalea were stressed. The sensory quality deteriorated after PS-MPs exposure, which was significantly related to changes in Chlorophyll a, particle size distribution, and colored dissolved organic matter. Turbidity in E groups and chroma in S groups were greatly affected by PS-MPs. Overall, under MPs exposure, macrophytes in E groups were more suitable for nitrogen removal, and macrophytes in S groups better purified the turbidity. The study could provide the basis for better allocation of macrophytes in CWs to reduce the purifying risk by PS-MPs disturbance.


Asunto(s)
Microplásticos , Nitrógeno , Contaminantes Químicos del Agua , Humedales , Nitrógeno/metabolismo , Nitrógeno/química , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/química , Plantas/metabolismo , Poliestirenos/química , Biodegradación Ambiental , Gusto , Humanos , Bacterias/metabolismo
2.
Sci Total Environ ; 945: 174042, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38908573

RESUMEN

Selecting an appropriate electron donor to enhance nitrogen removal for treating low C/N wastewater in ecological floating beds (EFBs) is controversy. In this study, a systematic and comprehensive evaluation of sodium acetate (EFB-C), sodium thiosulfate (EFB-S) and iron scraps (EFB-Fe) was performed in a 2-year experiment on long-term viability including nitrogen removal and greenhouse gas emissions associated with key molecular biological mechanisms. The results showed that EFB-C (43-85 %) and EFB-S (40-88 %) exhibited superior total nitrogen (TN) removal. Temperature and hydraulic retention time (HRT) have significant impacts on TN removal of EFB-Fe, however, it could reach 86 % under high temperature (30-35 °C) and a long HRT (3 days), and it has lowest N2O (0-6.2 mg m-2 d-1) and CH4 (0-5.3 mg m-2 d-1) fluxes. Microbial network analysis revealed that the microbes changed from competing to cooperating after adding electron donors. A higher abundance of anammox genera was enriched in EFB-Fe. The Mantel's test and structural equation model provided proof of the differences, which showed that acetate and thiosulfate were similar, whereas Fe0 was different in the nitrogen removal mechanism. Molecular biology analyses further verified that heterotrophic, autotrophic, and mixotrophic coupled with anammox were the main TN removal pathways for EFB-C, EFB-S, and EFB-Fe, respectively. These findings provide a better understanding of the biological mechanisms for selecting appropriate electron donors for treating low C/N wastewater.


Asunto(s)
Gases de Efecto Invernadero , Nitrógeno , Tiosulfatos , Eliminación de Residuos Líquidos , Aguas Residuales , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Gases de Efecto Invernadero/análisis , Hierro , Acetatos , Carbono
3.
Water Res ; 253: 121285, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38354664

RESUMEN

Considering the unsatisfied denitrification performance of carbon-limited wastewater in iron-based constructed wetlands (ICWs) caused by low electron transfer efficiency of iron substrates, utilization of plant-based conductive materials in-situ for improving the long-term reactivity of iron substrates was proposed to boost the Fe (III)/Fe (II) redox cycle thus enhance the nitrogen elimination. Here, we investigated the effects of withered Iris Pseudacorus biomass and its derived biochar on nitrogen removal for 165 days in ICWs. Results revealed that accumulate TN removal capacity in biochar-added ICW (BC-ICW) increased by 14.7 % compared to biomass-added ICW (BM-ICW), which was mainly attributed to the synergistic strengthening of iron scraps and biochar. The denitrification efficiency of BM-ICW improved by 11.6 % compared to ICWs, while its removal capacity declined with biomass consumption. Autotrophic and heterotrophic denitrifiers were enriched in BM-ICW and BC-ICW, especially biochar increased the abundance of electroactive species (Geobacter and Shewanella, etc.). An active iron cycle exhibited in BC-ICW, which can be confirmed by the presence of more liable iron minerals on iron scraps surface, the lowest Fe (III)/Fe (II) ratio (0.51), and the improved proportions of iron cycling genes (feoABC, korB, fhuF, TC.FEV.OM, etc.). The nitrate removal efficiency was positively correlated with the nitrogen, iron metabolism functional genes and the electron transfer capacity (ETC) of carbon materials (P < 0.05), indicating that redox-active carbon materials addition improved the iron scraps bioavailability by promoting electron transfer, thus enhancing the autotrophic nitrogen removal. Our findings provided a green perspective to better understand the redox properties of plant-based carbon materials in ICWs for deep bioremediation in-situ.


Asunto(s)
Carbón Orgánico , Desnitrificación , Hierro , Hierro/química , Humedales , Biomasa , Carbono , Oxidación-Reducción , Nitrógeno
4.
Environ Res ; 237(Pt 2): 117022, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37657608

RESUMEN

Restoration of submerged macrophytes is an efficient way for endogenous nutrient control and aquatic ecological restoration, but slow growth and limited reproduction of submerged macrophytes still exist. In this research, the effect of ferrous on the seed germination and growth of Vallisneria natans (V. natans) were studied through aquatic simulation experiments and its influence on the rhizosphere microbial community was also explored. The seed germination, growth, and physiological and ecological parameters of V. natans were significantly affected by the ferrous treatments. Ferrous concentration above 5.0 mg/L showed significant inhibition of seed germination of V. natans and the best concentration for germination was 0.5 mg/L. During the growth of V. natans, after ferrous was added, a brief period of stress occurred, which then promoted the growth lasting for about 19 days under one addition. The diversity and richness of the rhizospheric microbial were increased after the ferrous addition. However, the function of the rhizospheric microbial community showed no significant difference between different concentrations of ferrous adding in the overlying water. Ferrous addition affected the growth condition of plants (content of CAT, Chl a, Chl b, etc.), thus indirectly affecting the rhizospheric microbial community of V. natans. These impacts on V. natans and rhizosphere microorganisms could generalize to other submerged macrophytes in freshwater ecosystems, particularly which have similar habits. These findings would contribute to the ecological evaluation of ferrous addition or iron-containing water, and provide a reference for submerged macrophytes restoration and ecological restoration in freshwater ecosystems.

5.
Langmuir ; 39(31): 11016-11027, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37499073

RESUMEN

The adsorption of gaseous HCHO by raw lotus shell biochar carbonized at 500, 700, and 900 °C from the perspective of its internal crystal structure and surface functional groups was investigated by an integrated approach of experiments and density functional theory calculations. The results showed that lotus shell biochar carbonized at 700 °C had the best adsorption effect at a HCHO concentration of 10.50 ± 0.30 mg/m3, with an adsorption removal rate of 87.64%. The HCHO removal efficiency by lotus shell biochar carbonized at 500 and 900 °C was determined to be 80.96 and 83.07%, respectively. The HCHO adsorption on lotus shell biochar carbonized at 700 °C conformed to pseudo-second-order kinetics and was predominantly controlled by chemical adsorption. The Langmuir isotherm was the underlying mechanism for the monomolecular layer adsorption with a maximum adsorption capacity of 0.329 mg/g. The density functional theory calculations revealed that the adsorption of HCHO on the surface of CaCO3 and KCl in lotus shell biochar carbonized at 700 °C was a chemical adsorption process, with adsorption energies ranging from -64.375 to -87.554 kJ/mol. The strong interaction between HCHO and the surface was attributed to the electron transfer from HCHO to the surface, facilitated by metal atoms (Ca or K) and the oxygen atoms of HCHO. The carboxyl group on the surface of lotus shell biochar carbonized at 700 °C was identified as the key functional group responsible for HCHO adsorption. This study advanced our understanding of the environmental functions of inorganic crystals and surface functional groups in raw biochar and will enable the further development of biochar materials in environmental applications.

6.
Environ Res ; 234: 116548, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37414392

RESUMEN

The artificial tidal wetlands ecosystem was believed to be a useful device in treating saline water, and it played a significant part in global nitrogen cycles. However, limited information is available on nitrogen-cycling pathways and related contributions to nitrogen loss in tidal flow constructed wetlands (TF-CWs) for saline water treatment. This study operated seven experimental tidal flow constructed wetlands to remove nitrogen from saline water at salinities of 0-30‰. Stable and high NH4+-N removal efficiency (∼90.3%) was achieved, compared to 4.8-93.4% and 23.5-88.4% for nitrate and total nitrogen (TN), respectively. Microbial analyses revealed the simultaneous occurrence of anaerobic ammonium oxidation (anammox), dissimilatory nitrate reduction to ammonium (DNRA), nitrification and denitrification, contributing to nitrogen (N) loss from the mesocosms. The absolute abundances were 5.54 × 103-8.35 × 107 (nitrogen functional genes) and 5.21 × 107-7.99 × 109 copies/g (16S rRNA), while the related genera abundances ranged from 1.81% to 10.47% (nitrate reduction) and from 0.29% to 0.97% (nitrification), respectively. Quantitative response relationships showed ammonium transformation were controlled by nxrA, hzsB and amoA, and nitrate removal by nxrA, nosZ and narG. Collectively, TN transformation were determined by narG, nosZ, qnorB, nirS and hzsB through denitrification and anammox pathways. The proportion of nitrogen assimilation by plants was 6.9-23.4%. In summary, these findings would advance our understanding of quantitative molecular mechanisms in TF-CW mesocosms for treating nitrogen pollution that caused algal blooms in estuarine/coastal ecosystems worldwide.


Asunto(s)
Compuestos de Amonio , Purificación del Agua , Humedales , Nitrógeno/metabolismo , Desnitrificación , Ecosistema , Nitratos , ARN Ribosómico 16S
7.
Sci Total Environ ; 875: 162692, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36894080

RESUMEN

This study investigated the nitrogen removal enhanced by combined iron scraps and plant biomass, and its microbial response in the wetland with different plant ages and temperatures. The results showed that older plants benefitted the efficiency and stability of nitrogen removal, which could reach 1.97 ± 0.25 g m-2 d-1 in summer and 0.42 ± 0.12 g m-2 d-1 in winter. Plant age and temperature were the main factors determining the microbial community structure. Compared with temperature, plant ages affected more significantly on relative abundance of microorganisms such as Chloroflexi, Nitrospirae, Bacteroidetes and Cyanobacteria, and functional genera for nitrification (e.g., Nitrospira) and iron reduction (e.g., Geothrix). The absolute abundance of total bacterial 16S rRNA ranged from 5.22 × 108 to 2.63 × 109 copies g-1 and presented extremely significant negative correlation to plant age, which would lead to a decline in microbial function on information storage and processing. The quantitative relationship further revealed that the ammonia removal was related to 16S rRNA and AOB amoA, while nitrate removal was controlled by 16S rRNA, narG, norB and AOA amoA jointly. These findings suggested that a mature wetland for nitrogen removal enhancement should focus on aging microbes caused by old plants and possible endogenous pollution.


Asunto(s)
Cianobacterias , Humedales , Humanos , Desnitrificación , ARN Ribosómico 16S , Eliminación de Residuos Líquidos/métodos , Biomasa , Nitrógeno
8.
Environ Res ; 223: 115375, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36709026

RESUMEN

Three kinds of bioretention were designed to explore the effects of zero-valent iron (ZVI) and biochar on the nitrogen removal performance and to seek a more reasonable packing method in this study. The results showed that the effluent removal rates of nitrate, ammonium and total nitrogen were 53.30 ± 12.68%, 98.41 ± 0.38% and 64.03 ± 8.72% respectively in Bioretention-3 during the rainfall events, while the nitrate concentration decreased gradually with the increase of drying time. According to the batch experiment, it was found that zero-valent iron could release continuously and stably in Bioretention-3 and Bioretention-1 due to the interception effect of biochar on dissolved oxygen. In addition, biochar in soil layer could protect zero-valent iron from excessive oxidation while biochar in the substrate layer could release organic matter to promote heterotrophic denitrification. Microbial community analysis showed that the dominant phyla were Proteobacteria (20.92-40.81%) and Actinobacteriota (9.89-24.54%). The dominant nitrifying genera was Nitrospira while there were also aerobic denitrifying bacteria (Sphingomonas, Bradyrhizobium and Chryseolinea, etc.) in soil layer. In the substrate layer, there was more ferrous iron-mediated autotrophic denitrification process (Thiobacillus, Geobacter and Denitratisoma, etc.) in Bioretention-1 and Bioretention-3 while a larger proportion of Dissimilatory Nitrate Reduction to Ammonium process (DNRA) (Bacillus, Desulfovibrio and Pseudomonas, etc.) in Bioretention-2. In general, this study showed that biochar addition in soil coupled with mixing zero-valent iron and biochar as substrate layer was a more stable and efficient design through various aspects of evidence. It provides a new way for how to use zero-valent iron and biochar to improve nitrogen removal capacity in stormwater management.


Asunto(s)
Compuestos de Amonio , Nitratos , Hierro , Desnitrificación , Nitrógeno , Bacterias , Suelo
9.
Bioresour Technol ; 369: 128495, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36526117

RESUMEN

Ammonium oxidation coupled to Fe(III) reduction (Feammox) is a newly discovered iron-nitrogen cycle process of microbial catalyzed NH4+ oxidation coupled with iron reduction. Fe(III) often exists in the form of insoluble iron minerals resulting in reduced microbial availability and low efficiency of Feammox. Electron shuttles(ESs) can be reversibly oxidized and reduced which has the potential to improve Feammox efficiency. This review summarizes the discovery process, electron transfer mechanism, influencing factors and driven microorganisms of Feammox, ang expounds the possibility and potential mechanism of ESs to enhance Feammox efficiency. Based on an in-depth analysis of the current research situation of Feammox for nitrogen removal, the knowledge gaps and future research directions including how to apply ESs enhanced Feammox to promote nitrogen removal in practical wastewater treatment have been highlighted. This review can provide new ideas for the engineering application research of Feammox and strong theoretical support for its development.


Asunto(s)
Compuestos de Amonio , Compuestos Férricos , Electrones , Anaerobiosis , Hierro , Ciclo del Nitrógeno , Oxidación-Reducción , Nitrógeno , Desnitrificación
10.
Sci Total Environ ; 861: 160718, 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36481157

RESUMEN

In this study, an iron scrap (IS)-based ecological floating bed was constructed to couple with plant biomass (FeB-EFB) for treating low-polluted water, and the nitrogen removal performance and mechanism were explored. The results showed that the nitrogen could be effectively removed in FeB-EFB, and the nitrate removal efficiency was 29.14 ± 8.06% even at a low temperature (13.9 ± 2.2 °C). After the temperature rose to 20.0 ± 0.9 °C, the denitrification rate was increased by 0.63 ± 0.16-0.81 ± 0.27 g/(m2 d) due to the synergistic effect of ISs and plant biomass. Plant biomass could promote the ISs release efficiency, while ISs could facilitate plant biomass availability by promoting cellulose decomposition. High-throughput sequencing analysis revealed that the iron-oxidizing bacteria Pseudomonas were the dominant genus in FeB-EFB. Meanwhile, the existence of plant biomass could increase the abundance of iron-related bacteria and enrich heterotrophic and facultative denitrifying bacteria (e.g., Hydrogenophaga, Comamonas) as well, improving iron-mediated denitrification and heterotrophic denitrification simultaneously. Therefore, mixotrophic denitrification improvement played a major role in promoting nitrogen removal of FeB-EFB. These results indicated that coupling iron scraps with plant biomass may be an effective way to improve the nitrogen removal performance of EFB.


Asunto(s)
Desnitrificación , Hierro , Biomasa , Reactores Biológicos/microbiología , Procesos Heterotróficos , Nitratos , Nitrógeno
11.
J Environ Manage ; 324: 116326, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36182841

RESUMEN

Iron-based ecological floating beds (EFBs) are often used to treat the secondary effluent from wastewater treatment plant to enhance the denitrification process. However, the impact and necessity of plants on iron-based EFBs have not been systematically studied. In this research, two iron-based EFBs with and without plants (EFB-P and EFB) were performed to investigate the response of plants on nutrient removal, GHG emissions, microbial communities and functional genes. Results showed the total nitrogen and total phosphorus removal in EFB-P was 45-79% and 48-72%, respectively, while that in EFB was 31-67% and 44-57%. Meanwhile, plants could decrease CH4 emission flux (0-3.89 mg m-2 d-1) and improve CO2 absorption (4704-22321 mg m-2 d-1). Plants could increase the abundance of Nitrosospira to 1.6% which was a kind of nitrifying bacteria dominant in plant rhizosphere. Among all denitrification related genera, Simplicispira (13.08%) and Novosphingobium (6.25%) accounted for the highest proportion of plant rhizosphere and iron scrap, respectively. Anammox bacteria such as Candidatus_Brocadia was more enriched on iron scraps with the highest proportion was 1.21% in EFB-P, and 2.20% in EFB. Principal co-ordinates analysis showed that plants were the critical factor determining microbial community composition. TN removal pathways were mixotrophic denitrification and anammox in EFB-P while TP removal pathways were plant uptake and phosphorus-iron coprecipitation. In general, plants play an important directly or indirectly role in iron-based EFBs systems, which could not only improve nutrients removal, but also minimize the global warming potential and alleviate the greenhouse effect to a certain extent.


Asunto(s)
Gases de Efecto Invernadero , Purificación del Agua , Nitrógeno , Fósforo , Hierro , Desnitrificación , Aguas Residuales , Reactores Biológicos
12.
Environ Res ; 215(Pt 1): 114235, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36055394

RESUMEN

This study explored the microbial nitrogen transformation and removal potential in the plant rhizosphere of seven artificial tidal wetlands under different salinity gradients (0-30‰). Molecular biological and stable isotopic analyses revealed the existence of simultaneous anammox (anaerobic ammonium oxidation), nitrification, DNRA (dissimilatory nitrate reduction to ammonium) and denitrification processes, contributing to nitrogen loss in rhizosphere soil. The microbial abundances were 2.87 × 103-9.12 × 108 (nitrogen functional genes) and 1.24 × 108-8.43 × 109 copies/g (16S rRNA gene), and the relative abundances of dissimilatory nitrate reduction and nitrification genera ranged from 6.75% to 24.41% and from 0.77% to 1.81%, respectively. The bacterial 16S rRNA high-throughput sequencing indicated that Bacillus, Zobellella and Paracoccus had obvious effects on nitrogen removal by heterotrophic nitrifying/aerobic denitrifying process (HN-AD), and autotrophic nitrification (Nitrosomonas, Nitrospira and Nitrospina), conventional denitrification (Bradyrhizobium, Burkholderia and Flavobacterium), anammox (Candidatus Brocadia and Candidatus Scalindua) and DNRA (Clostridium, Desulfovibrio and Photobacterium) organisms co-existed with HN-AD bacteria. The potential activities of DNRA, nitrification, anammox and denitrification were 1.23-9.23, 400.03-755.91, 3.12-35.24 and 30.51-300.04 nmolN2·g-1·d-1, respectively. The denitrification process contributed to 73.59-88.65% of NOx- reduction, compared to 0.71-13.20% and 8.20-15.42% via DNRA and anammox, as 83.83-90.74% of N2 production was conducted by denitrification, with the rest through anammox. Meanwhile, the nitrification pathway accounted for 95.28-99.23% of NH4+ oxidation, with the rest completed by anammox bacteria. Collectively, these findings improved our understanding on global nitrogen cycles, and provided a new idea for the removal of contaminants in saline water treatment.


Asunto(s)
Compuestos de Amonio , Nitrógeno , Bacterias/genética , Bacterias/metabolismo , Desnitrificación , Nitratos/análisis , Nitrógeno/análisis , Oxidación-Reducción , ARN Ribosómico 16S , Rizosfera , Salinidad , Suelo , Humedales
13.
Sci Total Environ ; 815: 152800, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34982986

RESUMEN

The iron-assisted autotrophic denitrification was plagued by passivation when introduced in surface flow constructed wetlands (SFCWs). Iron­carbon micro-electrolysis (Fe/C-M/E) could facilitate the transfer of electrons during the utilization of iron. In this study, iron scraps coupling with activated carbon and biochar were applied to explore the effects of carbon materials on autotrophic denitrification. The results showed that TN removal rate in the SFCW with iron scraps and activated carbon (SFCW-IAC) and the SFCW with iron scraps and biochar (SFCW-IBC) were improved by 31.61% ± 8.18% and 14.09% ± 7.15%, and N2O fluxes were reduced to 2.73 and 3.12 mg m-2 d-1, respectively. The greater iron mass loss rate (0.91%) was confirmed in SFCW-IAC. Microbial community analysis reported that autotrophic denitrification and iron related genera were increased. This study proved that activated carbon was more suitable than biochar to Fe/C-M/E for denitrification enhancement and N2O emission reduction.


Asunto(s)
Nitrógeno , Humedales , Carbón Orgánico , Desnitrificación , Electrólisis , Hierro , Eliminación de Residuos Líquidos
14.
J Hazard Mater ; 420: 126617, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34271446

RESUMEN

With a narrow margin between deficiency and toxicity, rising levels of selenium (Se) are threatening aquatic ecosystems. To investigate the role of microorganisms in Se bioremediation, a cattail litter system inoculated with the sulfur-based denitrification sludge was conducted. The results show the litter, as a carrier and nutrient source for bacteria, efficiently removed Se by ~ 97.0% during a 12-d treatment with water circulating. As the major removal pathways, immobilization rates of selenite were ~ 2.9-fold higher than selenate, and the volatilization, contributing to ~ 87.7% of the total Se removal, was significantly correlated with temperature (positively) and oxidation-reduction potential (ORP; negatively). Using X-ray absorption spectroscopy to speciate litter-borne Se, more Se0 formed without aeration due to abundant Se-reducing bacteria, among which Azospira and Azospirillum were highly related to the removal of both Se oxyanions, while Desulfovibrio, Azoarcus, Sulfurospirillum, Thauera, Geobacter, Clostridium, and Pediococcus were the major contributors to selenate removal. Overall, our study suggests microbial Se metabolism in the litter system was significantly affected by temperature and ORP, which could be manipulated to enhance Se removal efficiency and the transformation of selenate/selenite into low toxic Se0 and volatile Se, reducing risks posed by the residual Se in the system.


Asunto(s)
Microbiota , Selenio , Typhaceae , Desnitrificación , Aguas del Alcantarillado , Azufre , Temperatura
15.
Water Res ; 202: 117446, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34314924

RESUMEN

The present study investigated the performance in nitrogen removal and associated nitrogen transformation processes in seven mesocosms fed with saline water (0‰ to 30‰) to simulate tidal flow constructed wetlands (TF CWs). The highly effective and steady removal of NH4+-N (84.74% averagely) was obtained at various salinities, while the rates varied from 6.34% to 89.19% and 22.54% to 87.48% for NO3--N and total nitrogen (TN), respectively. Overall, nitrogen removal efficiencies were greater at lower salinities. Molecular biological analyses verified the co-occurrence of dissimilatory nitrate reduction to ammonium (DNRA), denitrification, anaerobic ammonium oxidation (anammox) and nitrification in the mesocosms, reportedly contributing to nitrogen removal in TF CWs. The absolute copy numbers of nitrogen functional genes and total bacterial 16S rRNA were 2.54 × 103-7.35 × 107 and 3.21 × 107-7.82 × 109 copies g-1 dg (dry gravel), respectively, with the dominant phyla, i.e., Chloroflexi, Proteobacteria, Actinobacteriota, Cyanobacteria, and Firmicutes, accounting for over 80% of the sequences. The relative abundances of the genera related to nitrification and dissimilatory nitrate reduction processes, i.e., denitrification, anammox and DNRA, varied from 0.16% to 0.89% and from 3.66% to 11.59%, respectively, while quantitative relationships confirmed NH4+-N transformation rate was jointly controlled by amoA, hzsB, nxrA and nrfA, and NO3--N removal rate by nirS, nosZ, narG, qnorB and nxrA. These findings may shed light on quantitative molecular mechanisms for nitrogen removal in TF CWs for the saline water treatment, providing a sustainable solution to nitrogen pollution problem in the estuary ecosystem.


Asunto(s)
Nitrógeno , Humedales , Desnitrificación , Ecosistema , ARN Ribosómico 16S/genética , Salinidad
16.
Bioresour Technol ; 332: 125083, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33826983

RESUMEN

Electron donors have been widely used to improve denitrification performance. However, it is controversial which electron donor could be chosen. In this study, three electron donors were used to improve nitrogen removal from ecological floating beds (EFBs). The results showed that TN removal efficiency was 49-80%, 46-81%, and 45-79% in EFB-C (sodium acetate), EFB-S (sodium thiosulfate), EFB-Fe (iron scraps), respectively. Nitrification was limited in EFB-C and EFB-S while denitrification in EFB-Fe. The TN removal in the three EFBs were almost equivalent when HRT was 3 days. Lowest CH4 and N2O emissions were measured in EFB-Fe. Nitrifying and denitrifying bacteria were mainly concentrated in the root rhizospheres while iron cycle related and anammox bacteria were mainly concentrated on iron scraps surface. Heterotrophic denitrification and autotrophic denitrification were mainly attributed to TN removal in EFB-C and EFB-S, respectively. Autotrophic, heterotrophic denitrification and anammox contributed to TN removal in EFB-Fe.


Asunto(s)
Reactores Biológicos , Desnitrificación , Electrones , Nitrificación , Nitrógeno
17.
J Hazard Mater ; 405: 124212, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33535361

RESUMEN

Selenium (Se)-polluted soils pose serious threats to terrestrial ecosystems through food chains. This study evaluated the use of earthworm Eisenia fetida and organic materials for Se remediation. The greater mortality (6.7%) and weight loss (28.6%) were observed for earthworms exposed to selenate than selenite at 20 mg Se Kg-1 over 21 d, while selenate was taken up 2.5-fold faster than selenite. Compared with peat moss, Se accumulation increased by 119% in selenite-exposed earthworms supplied with cow manure. Earthworm activity caused greater reduction in selenite (17.4%), with little impact on selenate-treated soil. X-ray absorption spectroscopy speciation analysis shows 87-91% of tissue Se was transformed to organo-Se, i.e., SeMet and SeCys, in earthworms exposed to either selenite or selenate, posing great risks to their predators. The study also found selenium increased bacterial diversity in earthworm casts, while greater relative abundances (~37.57%) of functional genera were obtained for selenite. Over 24 h, two bacteria strains, Bacillus cereus and Aeromonas encheleia, isolated from casts, rapidly reduced selenite by ~94%, compared to ~25% for selenate. Elemental Se was present only in strains (~27%), casts (~11%) and worm-inhabited soil (~2.7%) of selenite treatments, suggesting earthworm gut microbiota could buffer earthworms and other soil fauna from selenite toxicity.


Asunto(s)
Oligoquetos , Selenio , Aeromonas , Animales , Bovinos , Ecosistema , Femenino , Selenio/toxicidad , Suelo
18.
Sci Total Environ ; 758: 143594, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33246723

RESUMEN

Constructed wetlands are efficient in removing nitrogen from water; however, little is known about nitrogen-cycling pathways for nitrogen loss from tidal flow constructed wetlands. This study conducted molecular and stable isotopic analyses to investigate potential dissimilatory nitrate reduction to ammonium (DNRA), denitrification, nitrification, anaerobic ammonium oxidation (anammox), and their contributions to nitrogen removal by two tidal wetland mesocosms, PA (planted with Phragmites australis) and NP (unplanted), designated to treat Yangtze River Estuary water. Our results show the mesocosms removed ~22.6% of TN from nitrate-dominated river water (1.19 mg·L-1), with better performance obtained in PA than that in NP, which was consistent with the molecular and stable isotopic data. The potential activities of DNRA, anammox, denitrification and nitrification varied between 0.6 and 1.6, 4.6-37.3, 36.4-305.7, and 463.7-945.9 nmol N2 g-1 dry soil d-1, respectively, with higher values obtained in PA than NP. Nitrification accounted for 94.3-99.4% of NH4+ oxidation, with the rest through anammox. Denitrification contributed to 77.9-90.3% of NOx- reduction, compared to 9.2-21.6% and 0.5-1.5% via anammox and DNRA, respectively; 78.4-90.9% of N2 was produced through denitrification, with the rest via anammox. Pearson correlation analyses suggest NH4+ was the major factor regulating nitrification, while NO3- played an important role in the competition between denitrification and DNRA, and NO2- was a key restrictive factor for anammox. Overall, this study reveals the importance of nitrification, denitrification, anammox and DNRA in nitrogen removal, providing new insight into the nitrogen-cycling mechanisms in natural/artificial tidal wetlands.


Asunto(s)
Compuestos de Amonio , Humedales , Desnitrificación , Nitrificación , Nitrógeno , Oxidación-Reducción
19.
Environ Pollut ; 268(Pt A): 115842, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33120338

RESUMEN

Ecological floating beds (EFBs) have become a superior method for treating secondary effluent from wastewater treatment plant. However, insufficient electron donor limited its denitrification efficiency. Iron scraps from lathe cutting waste consist of more than 95% iron could be used as electron donors to enhance denitrification. In this study, EFBs with and without iron scraps supplementation (EFB-Fe and EFB, respectively) were conducted to explore the impacts of iron scraps addition on nitrogen removal, nitrous oxide (N2O) emissions and microbial communities. Results showed the total nitrogen (TN) removal in EFB-Fe improved to 79% while that in EFB was 56%. N2O emission was 0-6.20 mg m-2 d-1 (EFB-Fe) and 1.74-15.2 mg m-2 d-1 (EFB). Iron scraps could not only improve nitrogen removal efficiency, but also reduce N2O emissions. In addition, high-throughput sequencing analysis revealed that adding iron scraps could improve the sum of denitrification related genera, among which Novosphingobium accounted for the highest proportion (6.75% of PFe1, 4.24% of PFe2, 3.18% of PFe3). Iron-oxidizing bacteria and iron-respiring bacteria associated with and nitrate reducing bacteria mainly concentrated on the surface of iron scraps. Principal co-ordinates analysis (PCoA) indicated that iron scraps were the key factor affecting microbial community composition. The mechanism of iron scraps enhanced nitrogen removal was realized by enhanced biological denitrification process. Iron release dynamic from iron scraps was detected in bench-scale experiment and the electron transfer mechanism was that Fe0 transferred electrons directly to NO3--N, and biological iron nitrogen cycle occurred in EFB-Fe without secondary pollution.


Asunto(s)
Productos Biológicos , Óxido Nitroso , Reactores Biológicos , Desnitrificación , Hierro , Nitrógeno
20.
Sci Total Environ ; 716: 137054, 2020 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-32036140

RESUMEN

Tidal flow constructed wetlands (TF CWs) have been considered an effective approach to treat contaminated river water, as well as a significant role in global matter cycles, especially for carbon and nitrogen. Notably, it has been thought that methane oxidation was completely catalyzed by the aerobic process, ignoring the anaerobic methane oxidation, such as the nitrite-dependent anaerobic methane oxidation (n-damo) process. In our current work, therefore, we used molecular and stable isotopes to investigate the biodiversity, quantity and potential rate of n-damo bacteria in the TF CWs located in the Xisha Wetland Park in the Yangtze River estuary, China. The results revealed that n-damo process was active in the collected soil cores, with a decreasing trend along water depths and rates ranging from 8.48 to 23.45 nmol CO2 g-1 dry soil d-1. The n-damo bacterial contributions to CH4 oxidation and N2 production in TF CWs reached 9.49-26.26% and 20.73-47.11%, respectively, suggesting that n-damo bacteria was an important nitrogen and methane sink in the TF CWs, but had been previously overlooked. The copy numbers of total bacterial 16S rRNA and pmoA genes were 1.84-11.21 × 109 and 0.59-2.72 × 106 copies g-1 ds, respectively, as the higher abundance was found in the soil at lower water levels during tidal submergence. Diverse n-damo bacterial 16S rRNA gene sequences belonged to group B, C and D were measured, and it was found that group B and C were the most frequently measured n-damo clusters in the TF CWs. In addition, nitrite was the key factor regulating the n-damo bacterial distribution in the TF CWs. This study would broaden our horizons and help us better understand the nitrogen and methane cycles in tidal ecosystems.


Asunto(s)
Humedales , Anaerobiosis , China , Ecosistema , Metano , Nitritos , Oxidación-Reducción , Filogenia , ARN Ribosómico 16S , Ríos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...