Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.615
Filtrar
1.
Aging Cell ; : e14266, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958042

RESUMEN

Age-related chronic inflammatory lung diseases impose a threat on public health, including idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD). However, their etiology and potential targets have not been clarified. We performed genome-wide meta-analysis for IPF with the largest sample size (2883 cases and 741,929 controls) and leveraged the summary statistics of COPD (17,547 cases and 617,598 controls). Transcriptome-wide and proteome-wide Mendelian randomization (MR) designs, together with genetic colocalization, were implemented to find robust targets. The mediation effect was assessed using leukocyte telomere length (LTL). The single-cell transcriptome analysis was performed to link targets with cell types. Individual-level data from UK Biobank (UKB) were used to validate our findings. Sixteen genetically predicted plasma proteins were causally associated with the risk of IPF and 6 proteins were causally associated with COPD. Therein, genetically-elevated plasma level of SCARF2 protein should reduce the risk of both IPF (odds ratio, OR = 0.9974 [0.9970, 0.9978]) and COPD (OR = 0.7431 [0.6253, 0.8831]) and such effects were not mediated by LTL. Genetic colocalization further corroborated these MR results of SCARF2. The transcriptome-wide MR confirmed that higher expression level of SCARF2 was associated with a reduced risk of both. However, the single-cell RNA analysis indicated that SCARF2 expression level was only relatively lower in epithelial cells of COPD lung tissue compared to normal lung tissue. UKB data implicated an inverse association of serum SCARF2 protein with COPD (hazard ratio, HR = 1.215 [1.106, 1.335]). The SCARF2 gene should be a novel target for COP.

2.
Angew Chem Int Ed Engl ; : e202409328, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958874

RESUMEN

Proton supply is as critical as O2 activation for artificial photosynthesis of H2O2 via two-electron oxygen reduction reaction (2e- ORR). However, proton release via water dissociation is frequently hindered because of the sluggish water oxidation reaction (WOR), extremely limiting the efficiency of photocatalytic H2O2 production. To tackle this challenge, carboxyl-enriched supramolecular polymer (perylene tetracarboxylic acid - PTCA) is elaborately prepared by molecular self-assembly for overall photosynthesis of H2O2. Interestingly, the interconversion between carboxyl as Brønsted acid and its conjugated base realizes rapid proton circulation. Through this efficient tandem proton transfer process, the spatial effect of photocatalytic reduction and oxidation reaction is greatly enhanced with reduced reaction barrier. This significantly facilitates 2e- photocatalytic ORR to synthesize H2O2 and in the meanwhile promotes 4e- photocatalytic WOR to evolve O2. Consequently, the as-developed PTCA exhibits a remarkable H2O2 yield of 185.6 µM h-1 in pure water and air atmosphere under visible light illumination. More impressively, an appreciable H2O2 yield of 78.6 µM h-1 can be well maintained in an anaerobic system owing to in-situ O2 generation by 4e- photocatalytic WOR. Our study presents a novel concept for artificial photosynthesis of H2O2 via constructing efficient proton transfer pathway to enable rapid proton circulation.

3.
Asian J Pharm Sci ; 19(3): 100910, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38948397

RESUMEN

The early diagnosis of cancer is vital for effective treatment and improved prognosis. Tumor biomarkers, which can be used for the early diagnosis, treatment, and prognostic evaluation of cancer, have emerged as a topic of intense research interest in recent years. Nucleic acid, as a type of tumor biomarker, contains vital genetic information, which is of great significance for the occurrence and development of cancer. Currently, living cell nucleic acid probes, which enable the in situ imaging and dynamic monitoring of nucleic acids, have become a rapidly developing field. This review focuses on living cell nucleic acid probes that can be used for the early diagnosis of tumors. We describe the fundamental design of the probe in terms of three units and focus on the roles of different nanomaterials in probe delivery.

4.
J Cancer ; 15(13): 4313-4327, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947397

RESUMEN

Aquaporin 5 (AQP5) has been shown to have a pro-carcinogenic effect in numerous types of malignancies. This research intends to investigate the role and the molecular mechanism of AQP5 on enriched gastric cancer stem cells (GCSCs). Methods: Immunohistochemistry, western blot (WB), and RT-qPCR techniques were employed to identify the presence of AQP5 in gastric cancer (GC) and the neighboring paracancerous tissues. Additionally, a statistical analysis was conducted to determine the correlation between AQP5 expression and the pathological and histological parameters. Furthermore, the study aimed to assess the predictive value of AQP5 expression in long-term survival after GC surgery. GCSCs were enriched using the serum-free culture method. The expression of AQP5 in enriched GCSCs was explored using RT-qPCR and WB. Plate cloning, transwell, WB, RT-qPCR, and the sphere-forming assay were utilized to monitor the proliferation, migration, and self-renewal capability of GCSCs after AQP5 knockdown. WB and Immunofluorescence for Detecting the Effect of AQP5 on Autophagy. WB, RT-qPCR, and other experiments were used for in-depth investigation of the potential molecular regulatory mechanism of AQP5 in GC. Results: AQP5 was highly expressed in GC tissues and GC cells, and overexpression of AQP5 was associated with lymph node metastasis, increased tumor size, and low 5-year postoperative survival in GC patients; other studies have shown that the AQP5 was highly expressed in GCSCs. Knockdown of AQP5 suppressed tumorigenesis in vivo and inhibited the proliferative, migratory, and self-renewal capability of GCSCs. It was also found that AQP5 could activate the autophagy phenomenon of GCSCs, and mechanistically, we found that AQP5 could regulate TRPV4 to affect the self-renewal ability of GCSCs. Conclusion: AQP5 can be further explored for GC therapy, as it has shown a significant impact on the self-renewal capability of GCSCs, which prevents GC progression.

5.
Front Endocrinol (Lausanne) ; 15: 1379398, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957444

RESUMEN

Background: Diabetic gastroparesis is a common complication in patient with diabetes. Dietary intervention has been widely used in the treatment of diabetic gastroparesis. The aim of this study is to evaluate the role of diet in the treatment of diabetic gastroparesis. Methods: This systematic review was conducted a comprehensive search of randomized controlled trials using dietary interventions for the treatment of diabetic gastroparesis up to 9 November 2023. The primary outcomes were gastric emptying time and clinical effect, while fasting blood glucose, 2-hour postprandial blood glucose and glycosylated hemoglobin were secondary outcomes. Data analysis was performed using RevMan 5.4 software, and publication bias test was performed using Stata 15.1 software. Results: A total of 15 randomized controlled trials involving 1106 participants were included in this review. The results showed that patients with diabetic gastroparesis benefit from dietary interventions (whether personalized dietary care alone or personalized dietary care+routine dietary care). Compared with routine dietary care, personalized dietary care and personalized dietary care+routine dietary care can shorten the gastric emptying time, improve clinical efficacy, and reduce the level of fasting blood glucose, 2-hour postprandial blood glucose and glycosylated hemoglobin. Conclusions: Limited evidence suggests that dietary intervention can promote gastric emptying and stabilize blood glucose control in patients with diabetic gastroparesis. Dietary intervention has unique potential in the treatment of diabetic gastroparesis, and more high-quality randomized controlled trials are needed to further validate our research results. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42023481621.


Asunto(s)
Gastroparesia , Humanos , Gastroparesia/dietoterapia , Gastroparesia/terapia , Gastroparesia/etiología , Vaciamiento Gástrico , Glucemia/metabolismo , Complicaciones de la Diabetes/dietoterapia , Ensayos Clínicos Controlados Aleatorios como Asunto , Resultado del Tratamiento , Diabetes Mellitus/dietoterapia
7.
Phys Rev Lett ; 132(24): 246401, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38949361

RESUMEN

Twisted bilayer graphene (TBG) can host the moiré energy flat bands with twofold degeneracy serving as a fruitful playground for strong correlations and topological phases. However, the number of degeneracy is not limited to two. Introducing a spatially alternative magnetic field, we report that the induced magnetic phase becomes an additional controllable parameter and leads to an undiscovered generation of fourfold degenerate flat bands. This emergence stems from the band inversion at the Γ point near the Fermi level with a variation of both twisted angle and magnetic phase. We present the conditions for the emergence of multifold degenerate flat bands, which are associated with the eigenvalue degeneracy of a Birman-Schwinger operator. Using holomorphic functions, which explain the origin of the double flat bands in the conventional TBG, we can generate analytical wave functions in the magnetic TBG to show absolute flatness with fourfold degeneracy. Moreover, we identify an orbital-related intervalley coherent state as the many-body ground state at charge neutrality. In contrast, the conventional TBG has only two moiré energy flat bands, and the highly degenerate flat bands with additional orbital channels in this magnetic platform might bring richer correlation physics.

8.
Sci Total Environ ; 947: 174627, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38986712

RESUMEN

Brown carbon (BrC), the light-absorbing component of organic aerosols, plays a significant role in climate change and atmospheric photochemistry. However, the water-insoluble fractions of BrC have not been extensively studied, limiting the assessment of the overall climate effects of BrC. In this study, water-soluble and -insoluble organic carbon (i.e., WSOC and WIOC) in wintertime aerosols in Hefei were subsequently fractionated, and their fluorescence properties were comparatively investigated with the excitation-emission matrix method. WIOC contributing 57.1 % was the major component of organic carbon. WSOC with the largest contribution from humic-like regions exhibited a redshift compared to WIOC. Three humic-like substances (HULIS) with different oxidation degrees and one protein-like substances (PRLIS) were identified as the major fluorescent components by the parallel factor analysis. WSOC had more highly oxygenated HULIS, whereas low-oxygenated HULIS dominated WIOC. Nighttime WIOC contained more less-oxygenated species. The positive matrix factorization analysis suggested that biomass burning (43 %) was the largest source of both fluorescent WSOC and WIOC. Coal combustion contributed much more to fluorescent WIOC (40 %), whereas secondary formation contributed more to fluorescent WSOC (12 %). During aerosol pollution episodes, the increase in fluorescence efficiency was much greater for WIOC (25 %) than for WSOC (12 %), and WSOC and WIOC experienced a redshift and blueshift in emission wavelength, respectively. WSOC had more highly oxygenated HULIS, while WIOC had more less-oxygenated HULIS in aerosol episodes than the non-episodic periods. In addition, aerosol pollution was accompanied by the increased contributions of biomass burning and coal combustion to both fluorescent WSOC and WIOC, while the decreased relative contribution of secondary formation to fluorescent WSOC. Our findings highlighted the different fluorescence properties, compositions and sources of fluorescent WSOC and WIOC, providing a comprehensive view of BrC aerosols.

9.
Front Cell Infect Microbiol ; 14: 1408388, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38988810

RESUMEN

Background: Surgical site infection (SSI) is a common complication in HIV-positive fracture patients undergoing surgery, leading to increased morbidity, mortality, and healthcare costs. Accurate prediction of SSI risk can help guide clinical decision-making and improve patient outcomes. However, there is a lack of user-friendly, Web-based calculator for predicting SSI risk in this patient population. Objective: This study aimed to develop and validate a novel web-based risk calculator for predicting SSI in HIV-positive fracture patients undergoing surgery in China. Method: A multicenter retrospective cohort study was conducted using data from HIV-positive fracture patients who underwent surgery in three tertiary hospitals in China between May 2011 and September 2023. We used patients from Beijing Ditan Hospital as the training cohort and patients from Chengdu Public Health and Changsha First Hospital as the external validation cohort. Univariate, multivariate logistic regression analyses and SVM-RFE were performed to identify independent risk factors for SSIs. A web-based calculator was developed using the identified risk factors and validated using an external validation cohort. The performance of the nomogram was evaluated using the area under the receiver operating characteristic (AUC) curves, calibration plots, and decision curve analysis (DCA). Results: A total of 338 HIV-positive patients were included in the study, with 216 patients in the training cohort and 122 patients in the validation cohort. The overall SSI incidence was 10.7%. The web-based risk calculator (https://sydtliubo.shinyapps.io/DynNom_for_SSI/) incorporated six risk factors: HBV/HCV co-infection, HIV RNA load, CD4+ T-cell count, Neu and Lym level. The nomogram demonstrated good discrimination, with an AUC of 0.890 in the training cohort and 0.853 in the validation cohort. The calibration plot showed good agreement between predicted and observed SSI probabilities. The DCA indicated that the nomogram had clinical utility across a wide range of threshold probabilities. Conclusion: Our study developed and validated a novel web-based risk calculator for predicting SSI risk in HIV-positive fracture patients undergoing surgery in China. The nomogram demonstrated good discrimination, calibration, and clinical utility, and can serve as a valuable tool for risk stratification and clinical decision-making in this patient population. Future studies should focus on integrating this nomogram into hospital information systems for real-time risk assessment and management.


Asunto(s)
Infecciones por VIH , Internet , Infección de la Herida Quirúrgica , Humanos , Masculino , China/epidemiología , Femenino , Persona de Mediana Edad , Infecciones por VIH/complicaciones , Estudios Retrospectivos , Factores de Riesgo , Infección de la Herida Quirúrgica/epidemiología , Adulto , Medición de Riesgo/métodos , Curva ROC , Nomogramas
10.
Front Plant Sci ; 15: 1416742, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38993942

RESUMEN

Pentatricopeptide repeat (PPR) proteins constitute one of the largest protein families in land plants, with over 300 members in various species. Nearly all PPR proteins are nuclear-encoded and targeted to the chloroplast and mitochondria, modulating organellar gene expression by participating in RNA metabolism, including mRNA stability, RNA editing, RNA splicing, and translation initiation. Organelle RNA metabolism significantly influences chloroplast and mitochondria functions, impacting plant photosynthesis, respiration, and environmental responses. Over the past decades, PPR proteins have emerged as a research focus in molecular biology due to their diverse roles throughout plant life. This review summarizes recent progress in understanding the roles and molecular mechanisms of PPR proteins, emphasizing their functions in fertility, abiotic and biotic stress, grain quality, and chloroplast development in rice. Furthermore, we discuss prospects for PPR family research in rice, aiming to provide a theoretical foundation for future investigations and applications.

11.
Angew Chem Int Ed Engl ; : e202407075, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990170

RESUMEN

Sodium metal batteries (SMBs) have received increasing attention due to the abundant sodium resources and high energy density, but suffered from the sluggish interfacial kinetic and unstable plating/stripping of sodium anode at low temperature, especially when matched with ester electrolytes. Here, we develop a stable ultra-low-temperature SMBs with high-capacity retention at -50°C in a weak solvated carbonate ester-based electrolyte, combined with an electrodeposited Na (Cu/Na) anode. The Cu/Na anode with electrochemically activated "deposited sodium" and stable inorganic-rich solid electrolyte interphase (SEI) was favor for the fast Na+ migration, therefore accelerating the interfacial kinetic process. As a result, the Cu/Na || NaCrO2 battery exhibited the highest capacity retention (compared to room-temperature capacity) in carbonate ester-based SMBs (98.05% at -25°C, 91.3% at -40°C, 87.9% at -50°C, respectively). The cyclic stability of 350 cycles at -25°C with a high energy efficiency of 96.15% and 70 cycles at -50°C can be achieved. Even in chill atmospheric environment with the fluctuant temperature, the battery can still operate over one month. This work provides a new opportunity for the development of low-temperature carbonate ester-based SMBs.

12.
Phys Rev Lett ; 132(26): 260802, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38996307

RESUMEN

Twin-field quantum key distribution (TFQKD) overcomes the linear rate-loss limit, which promises a boost of secure key rate over long distance. However, the complexity of eliminating the frequency differences between the independent laser sources hinders its practical application. We analyzed and determined the frequency stability requirements for implementing TFQKD using frequency-stabilized lasers. Based on this analysis, we proposed and demonstrated a simple and practical approach that utilizes the saturated absorption spectroscopy of acetylene as an absolute reference, eliminating the need for fast frequency locking to achieve TFQKD. Adopting the 4-intensity sending-or-not-sending TFQKD protocol, we experimentally demonstrated the TFQKD over 502, 301, and 201 km ultralow-loss optical fiber, respectively. We expect this high-performance scheme will find widespread usage in future intercity and free-space quantum communication networks.

13.
BMC Med Genomics ; 17(1): 189, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39020321

RESUMEN

BACKGROUND: This study aims to analyze the pathogenic gene in a Chinese family with non-syndromic hearing loss and identify a novel mutation site in the TNC gene. METHODS: A five-generation Chinese family from Anhui Province, presenting with autosomal dominant non-syndromic hearing loss, was recruited for this study. By analyzing the family history, conducting clinical examinations, and performing genetic analysis, we have thoroughly investigated potential pathogenic factors in this family. The peripheral blood samples were obtained from 20 family members, and the pathogenic genes were identified through whole exome sequencing. Subsequently, the mutation of gene locus was confirmed using Sanger sequencing. The conservation of TNC mutation sites was assessed using Clustal Omega software. We utilized functional prediction software including dbscSNV_AdaBoost, dbscSNV_RandomForest, NNSplice, NetGene2, and Mutation Taster to accurately predict the pathogenicity of these mutations. Furthermore, exon deletions were validated through RT-PCR analysis. RESULTS: The family exhibited autosomal dominant, progressive, post-lingual, non-syndromic hearing loss. A novel synonymous variant (c.5247A > T, p.Gly1749Gly) in TNC was identified in affected members. This variant is situated at the exon-intron junction boundary towards the end of exon 18. Notably, glycine residue at position 1749 is highly conserved across various species. Bioinformatics analysis indicates that this synonymous mutation leads to the disruption of the 5' end donor splicing site in the 18th intron of the TNC gene. Meanwhile, verification experiments have demonstrated that this synonymous mutation disrupts the splicing process of exon 18, leading to complete exon 18 skipping and direct splicing between exons 17 and 19. CONCLUSION: This novel splice-altering variant (c.5247A > T, p.Gly1749Gly) in exon 18 of the TNC gene disrupts normal gene splicing and causes hearing loss among HBD families.


Asunto(s)
Linaje , Humanos , Masculino , Femenino , Pérdida Auditiva/genética , Adulto , Pueblo Asiatico/genética , Genes Dominantes , Mutación , Empalme del ARN , Persona de Mediana Edad , China , Exones , Pueblos del Este de Asia , Proteínas de la Matriz Extracelular , Proteínas Ligadas a GPI
14.
Front Microbiol ; 15: 1416734, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39035444

RESUMEN

Tobacco, a crop of significant economic importance, was greatly influenced in leaf quality by protein content. However, current processing parameters fail to adequately meet the requirements for protein degradation. Microorganisms possess potential advantages for degrading proteins and enhancing the quality of tobacco leaves, and hold substantial potential in the process of curing. To effectively reduce the protein content in tobacco leaves, thereby improving the quality and safety of the tobacco leaves. In this study, tobacco leaf were used as experimental material. From these, the BSP1 strain capable of effectively degrading proteins was isolated and identified as Bacillus subtilis by 16S rDNA analysis. Furthermore, the mechanisms were analyzed by integrating microbiome, transcriptome, and metabolome. Before curing, BSP1 was applied to the surface of tobacco leaves. The results indicated that BSP1 effectively improves the activity of key enzymes and the content of related substances, thereby enhancing protein degradation. Additionally, protein degradation was achieved by regulating the diversity of the microbial community on the surface of the tobacco leaves and the ubiquitin-proteasome pathway. This study provided new strategies for extracting and utilizing functional strains from tobacco leaves, opening new avenues for enhancing the quality of tobacco leaves.

15.
Front Pharmacol ; 15: 1418560, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39035989

RESUMEN

Introduction: Basal cell carcinoma (BCC) is the most common skin cancer, lacking reliable biomarkers or therapeutic targets for effective treatment. Genome-wide association studies (GWAS) can aid in identifying drug targets, repurposing existing drugs, predicting clinical trial side effects, and reclassifying patients in clinical utility. Hence, the present study investigates the association between plasma proteins and skin cancer to identify effective biomarkers and therapeutic targets for BCC. Methods: Proteome-wide mendelian randomization was performed using inverse-variance-weight and Wald Ratio methods, leveraging 1 Mb cis protein quantitative trait loci (cis-pQTLs) in the UK Biobank Pharma Proteomics Project (UKB-PPP) and the deCODE Health Study, to determine the causal relationship between plasma proteins and skin cancer and its subtypes in the FinnGen R10 study and the SAIGE database of Lee lab. Significant association with skin cancer and its subtypes was defined as a false discovery rate (FDR) < 0.05. pQTL to GWAS colocalization analysis was executed using a Bayesian model to evaluate five exclusive hypotheses. Strong colocalization evidence was defined as a posterior probability for shared causal variants (PP.H4) of ≥0.85. Mendelian randomization-Phenome-wide association studies (MR-PheWAS) were used to evaluate potential biomarkers and therapeutic targets for skin cancer and its subtypes within a phenome-wide human disease category. Results: PTGES2, RNASET2, SF3B4, STX8, ENO2, and HS3ST3B1 (besides RNASET2, five other plasma proteins were previously unknown in expression quantitative trait loci (eQTL) and methylation quantitative trait loci (mQTL)) were significantly associated with BCC after FDR correction in the UKB-PPP and deCODE studies. Reverse MR showed no association between BCC and these proteins. PTGES2 and RNASET2 exhibited strong evidence of colocalization with BCC based on a posterior probability PP.H4 >0.92. Furthermore, MR-PheWAS analysis showed that BCC was the most significant phenotype associated with PTGES2 and RNASET2 among 2,408 phenotypes in the FinnGen R10 study. Therefore, PTGES2 and RNASET2 are highlighted as effective biomarkers and therapeutic targets for BCC within the phenome-wide human disease category. Conclusion: The study identifies PTGES2 and RNASET2 plasma proteins as novel, reliable biomarkers and therapeutic targets for BCC, suggesting more effective clinical application strategies for patients.

16.
Org Lett ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39038165

RESUMEN

An investigation of reversible protein conjugation and deconjugation is presented. Despite numerous available protein conjugation methods, there has been limited documentation of achieving protein conjugation in a controlled and reversible manner. This report introduces a protocol that enables protein modification in a multicomponent fashion under aqueous buffer and mild conditions. A readily available mercaptobenzaldehyde derivative can modify the primary amine of peptides and proteins with a distinctive [3.3.1] scaffold. This modification can be reversed under mild conditions in a controlled fashion, restoring the original protein motif. The effectiveness of this approach has been demonstrated in the modification and quantifiable regeneration of insulin protein.

17.
Nano Lett ; 24(29): 9074-9081, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38991210

RESUMEN

Cellulose is difficult to melt or dissolve. The dissolution and regeneration process paves the way to convert cellulose into diverse forms but still suffers from high costs and environmental pollution. Here, we developed a method that uses aqueous alkali to efficiently dissolve cellulose at a temperature above 0 °C in minutes for fabricating regenerated cellulose. Cellulose was modified with minimal carboxymethyl groups to weaken the intermolecular interaction and improve its dissolution. The modified cellulose can be commercially obtained from carboxymethyl cellulose manufacturing with low cost and high quality. The use of only aqueous alkali reduces pollution and facilitates chemical recycling, and the moderate dissolving temperature reduces energy consumption. The regenerated cellulose materials display excellent mechanical properties and can be recycled or biodegraded after use. The method allows the use of diverse raw materials and modifications to broaden its applicability. The study develops a low-cost and eco-friendly method to fabricate regenerated cellulose.

18.
BMC Nurs ; 23(1): 496, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030616

RESUMEN

OBJECTIVE: it was to explore the influence of the postoperative pain management mode on the psychological state, quality of life (QOL), and nursing satisfaction of late patients in the intensive care unit (ICU) and improve the nursing effect of late patients in the ICU. METHODS: seventy patients who were admitted to the postoperative ICU for gastric cancer and received treatment in our hospital from March 2021 to May 2022 were selected. The patients were assigned into a research group and a control (Ctrl) group according to a random number table, with 70 cases in each group. The Ctrl group received routine nursing intervention, while research group received nursing intervention based on routine nursing intervention with postoperative pain management mode and received psychological care. Good communication was established with the patients, and the postoperative pain assessment was well conducted. The general information, state-trait anxiety (STAI) score, World Health Organization's Quality of Life Instrument (WHO QOL-BREF) score, and care satisfaction were compared. RESULTS: the general information differed slightly, such as sex, age, and ward type, between groups, with comparability (P > 0.05). S-AI scores (13.15 ± 1.53 vs. 16.23 ± 1.24) and T-AI scores (14.73 ± 3.12 vs. 18.73 ± 3.16) in research group were inferior to those in Ctrl group (P < 0.05). The scores of patients in research group in the physiological field (78.9 ± 6.1 points vs. 72.3 ± 5.6 points), social relationship field (76.9 ± 4.5 points vs. 71.3 ± 4.8 points), psychological field (78.6 ± 6.2 points vs. 72.4 ± 5.3 points), environmental field (78.6 ± 6.7 points vs. 73.5 ± 6.4 points), and total QOL (79.5 ± 7.4 points vs. 71.6 ± 5.4 points) were higher than those in Ctrl group (P < 0.05). The total satisfaction rate with nursing care in research group (82.85%) was dramatically superior to that in Ctrl group (62.85%) (P < 0.05). CONCLUSION: the adoption of a postoperative pain management model in postoperative nursing interventions for patients in advanced ICUs can alleviate anxiety and depression, improve patients' QOL and nursing satisfaction, and have clinical promotion value.

20.
J Anim Sci Biotechnol ; 15(1): 98, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38987834

RESUMEN

BACKGROUND: The energy/protein imbalance in a low-protein diet induces lipid metabolism disorders in late-phase laying hens. Reducing energy levels in the low-protein diet to adjust the energy-to-protein ratio may improve fat deposition, but this also decreases the laying performance of hens. This study investigated the mechanism by which different energy levels in the low-protein diet influences liver lipid metabolism in late-phase laying hens through the enterohepatic axis to guide feed optimization and nutrition strategies. A total of 288 laying hens were randomly allocated to the normal-energy and normal-protein diet group (positive control: CK) or 1 of 3 groups: low-energy and low-protein diet (LL), normal-energy and low-protein diet (NL), and high-energy and low-protein diet (HL) groups. The energy-to-protein ratios of the CK, LL, NL, and HL diets were 0.67, 0.74, 0.77, and 0.80, respectively. RESULTS: Compared with the CK group, egg quality deteriorated with increasing energy intake in late-phase laying hens fed low-protein diet. Hens fed LL, NL, and HL diets had significantly higher triglyceride, total cholesterol, acetyl-CoA carboxylase, and fatty acid synthase levels, but significantly lower hepatic lipase levels compared with the CK group. Liver transcriptome sequencing revealed that genes involved in fatty acid beta-oxidation (ACOX1, HADHA, EHHADH, and ACAA1) were downregulated, whereas genes related to fatty acid synthesis (SCD, FASN, and ACACA) were upregulated in LL group compared with the CK group. Comparison of the cecal microbiome showed that in hens fed an LL diet, Lactobacillus and Desulfovibrio were enriched, whereas riboflavin metabolism was suppressed. Cecal metabolites that were most significantly affected by the LL diet included several vitamins, such as riboflavin (vitamin B2), pantethine (vitamin B5 derivative), pyridoxine (vitamin B6), and 4-pyridoxic acid. CONCLUSION: A lipid metabolism disorder due to deficiencies of vitamin B2 and pantethine originating from the metabolism of the cecal microbiome may be the underlying reason for fat accumulation in the liver of late-phase laying hens fed an LL diet. Based on the present study, we propose that targeting vitamin B2 and pantethine (vitamin B5 derivative) might be an effective strategy for improving lipid metabolism in late-phase laying hens fed a low-protein diet.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...