Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 4805, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35973997

RESUMEN

To fight against global warming, subambient daytime radiative cooling technology provides a promising path to meet sustainable development goals. To achieve subambient daytime radiative cooling, the reflection of most sunlight is the essential prerequisite. However, the desired high solar reflectance is easily dampened by environmental aging, mainly natural soiling and ultraviolet irradiation from sunlight causing yellowish color for most polymers, making the cooling ineffective. We demonstrate a simple strategy to use titanium dioxide nanoparticles, with ultraviolet resistance, forming hierarchical porous morphology via evaporation-driven assembly, which guarantees a balanced anti-soiling and high solar reflectance, rendering anti-aging cooling paint based coatings. We challenge the cooling coatings in an accelerated weathering test against simulated 3 years of natural soiling and simulated 1 year of natural sunshine, and find that the solar reflectance only declined by 0.4% and 0.5% compared with the un-aged ones. We further show over 6 months of aging under real-world conditions with barely no degradation to the cooling performance. Our anti-aging cooling paint is scalable and can be spray coated on desired outdoor architecture and container, presenting durable radiative cooling, promising for real-world applications.

2.
ACS Appl Mater Interfaces ; 14(3): 4571-4578, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35020361

RESUMEN

Polymer coatings with comprehensive properties including passive radiative cooling, anti-fouling, and self-healing constitute a promising energy-saving strategy but have not been well documented yet. Herein, we reported a class of novel multifunctional supramolecular polysiloxane composite coatings showing the combination of these features. The coatings have a hybrid structure with a slippery liquid-infused porous surface and a gradient polymer-Al2O3 composite matrix constructed by reversible hydrogen bonding. The gradient matrix consists of a polymer-rich top and a particle-rich bottom favoring coating attachment on rigid substrates. Such a complex structure can be obtained by simply casting the suspending solutions of the polydimethylsiloxane (PDMS)-urea copolymer and Al2O3 on substrates followed by swelling silicone oil. Obtained coatings display good passive daytime radiative cooling (a temperature drop of ∼2 °C), self-healing ability, and anti-fouling properties. Since the comprehensive performances and the facile fabrication, the coatings should have application potential for various thermal management purposes.

3.
J Phys Chem Lett ; 12(51): 12370-12375, 2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-34939816

RESUMEN

Water evaporation-driven electricity (EDE) has attracted a great deal of attention in recent years as a novel renewable energy. Previous works have demonstrated that a high evaporation rate leads to a large output voltage. Hence, it is believed that heating is beneficial to EDE by enhancing the evaporation rate. However, experimental verification is lacking. This study demonstrates that heat induces a thermodiffusion effect that drives hydrated ions in the opposite direction of the evaporation-driven water flow, which reduces the output voltage as a synergistic effect. Our findings could be useful for designing a multifunction EDE generator and provide insight into the electricity generation mechanism.

4.
Adv Mater ; 33(22): e2007154, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33891327

RESUMEN

In-fiber fluid instability can be harnessed to realize scalable microparticles fabrication with tunable sizes and multifunctional characteristics making it competitive in comparison to conventional microparticles fabrication methods. However, since in-fiber fluid instability has to be induced via thermal annealing and the resulting microparticles can only be collected after dissolving the fiber cladding, obtaining contamination-free particles for high-temperature incompatible materials remains great challenge. Herein, confinement-free fluid instability is demonstrated to fabricate polymeric microparticles in a facile manner induced by the ultralow surface energy of the superamphiphobic surface. The polymer solution columns break up into uniform droplets then form spherical particles spontaneously in seconds at ambient temperature. This method can be applied to a variety of polymers spanning an exceptionally wide range of sizes: from 1 mm down to 1 µm. With the aid of microfluidic spinning instrument, a large quantity of microparticles can be obtained, making this method promising for scaling up production. Notably, through simple modification of the feed solution configuration, composite/structured micromaterials can also be produced, including quantum-dots-labeled fluorescent particles, magnetic particles, core-shell particles, microcapsules, and necklace-like microfibers. This method, with general applicability and facile control, is envisioned to have great prospects in the field of polymer microprocessing.

5.
Chem Soc Rev ; 50(6): 4031-4061, 2021 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-33554976

RESUMEN

Superhydrophobic surfaces hold great prospects for extremely diverse applications owing to their water repellence property. The essential feature of superhydrophobicity is micro-/nano-scopic roughness to reserve a large portion of air under a liquid drop. However, the vulnerability of the delicate surface textures significantly impedes the practical applications of superhydrophobic surfaces. Robust superhydrophobicity is a must to meet the rigorous industrial requirements and standards for commercial products. In recent years, major advancements have been made in elucidating the mechanisms of wetting transitions, design strategies and fabrication techniques of superhydrophobicity. This review will first introduce the mechanisms of wetting transitions, including the thermodynamic stability of the Cassie state and its breakdown conditions. Then we highlight the development, current status and future prospects of robust superhydrophobicity, including characterization, design strategies and fabrication techniques. In particular, design strategies, which are classified into passive resistance and active regeneration for the first time, are proposed and discussed extensively.

6.
J Phys Chem B ; 125(7): 1936-1943, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33570411

RESUMEN

Continuous sweeping of dropwise condensates is an effective form of vapor to liquid transition in terms of thermal transport at a solid/liquid interface. However, using conventional approaches, it is difficult to simultaneously achieve small activating size and fast departure of condensed droplets with high efficiency, due to the insufficient driving force compared to adhesion. Here, we propose an unexplored method to stimulate a frequent sweeping removal of dropwise condensates at ultrahigh efficiency on a superhydrophobic substrate, aided by a charge density gradient (CDG). We show that the CDG can be injected inside a superhydrophobic substrate on which the condensate droplet with jump-induced charges starts to sweep at a small size down to the microscale followed by quick snowball-like growing and chase-like propelling. The incorporation of the CDG on a superhydrophobic substrate enables a continuous, fast, frequent, long-range, and gravity-independent droplet removal during condensation, making this strategy a promising solution for diverse applications in water harvesting, antifogging, and anti-icing.

8.
ACS Omega ; 5(41): 26908-26913, 2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-33111017

RESUMEN

Water droplets are usually charged positively via either electrospray or contact electrification at the solid/liquid interface. Herein, we describe a facile two-step strategy to generate charged droplets with desired polarities. In particular, negatively charged droplets can be generated via electrostatic induction using a precharged superamphiphobic substrate as an electret. The interplay of repulsive and attractive interactions between like- and unlike-charged droplets or electret leads to rapid droplet transport and self-assembly of specific highly ordered arrays.

9.
ACS Appl Mater Interfaces ; 12(9): 11232-11239, 2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32048827

RESUMEN

When external pressure drives an electrolyte solution in a capillary tube with a charged inner surface, we obtain a streaming potential/current. This effect is also manifested when water flows through the microchannels of a tree, which is driven by capillary pressure and natural evaporation. Thus, by making use of natural evaporation, we took advantage of the anisotropic three-dimensional wood structures to fabricate nanogenerators drawing electricity from the streaming potential/current. As a result, direct current can be harvested continuously, simply through a piece of wood. A 300 mV open-circuit voltage and a 10 µA short-circuit current (ISC) were recorded from a single device, which surpassed the ISC values of most previous works by an order. By connecting five wood nanogenerators in series, a calculator can be completely functional, as a demonstration for practical application.

11.
Natl Sci Rev ; 6(6): 1066-1067, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34691973
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA