Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.490
Filtrar
1.
Neural Regen Res ; 20(3): 873-886, 2025 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38886959

RESUMEN

JOURNAL/nrgr/04.03/01300535-202503000-00031/figure1/v/2024-06-17T092413Z/r/image-tiff Specialized pro-resolving lipid mediators including maresin 1 mediate resolution but the levels of these are reduced in Alzheimer's disease brain, suggesting that they constitute a novel target for the treatment of Alzheimer's disease to prevent/stop inflammation and combat disease pathology. Therefore, it is important to clarify whether they counteract the expression of genes and proteins induced by amyloid-ß. With this objective, we analyzed the relevance of human monocyte-derived microglia for in vitro modeling of neuroinflammation and its resolution in the context of Alzheimer's disease and investigated the pro-resolving bioactivity of maresin 1 on amyloid-ß42-induced Alzheimer's disease-like inflammation. Analysis of RNA-sequencing data and secreted proteins in supernatants from the monocyte-derived microglia showed that the monocyte-derived microglia resembled Alzheimer's disease-like neuroinflammation in human brain microglia after incubation with amyloid-ß42. Maresin 1 restored homeostasis by down-regulating inflammatory pathway related gene expression induced by amyloid-ß42 in monocyte-derived microglia, protection of maresin 1 against the effects of amyloid-ß42 is mediated by a re-balancing of inflammatory transcriptional networks in which modulation of gene transcription in the nuclear factor-kappa B pathway plays a major part. We pinpointed molecular targets that are associated with both neuroinflammation in Alzheimer's disease and therapeutic targets by maresin 1. In conclusion, monocyte-derived microglia represent a relevant in vitro microglial model for studies on Alzheimer's disease-like inflammation and drug response for individual patients. Maresin 1 ameliorates amyloid-ß42-induced changes in several genes of importance in Alzheimer's disease, highlighting its potential as a therapeutic target for Alzheimer's disease.

2.
Gut ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38950910

RESUMEN

Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses a wide spectrum of liver injuries, ranging from hepatic steatosis, metabolic dysfunction-associated steatohepatitis (MASH), fibrosis, cirrhosis to MASLD-associated hepatocellular carcinoma (MASLD-HCC). Recent studies have highlighted the bidirectional impacts between host genetics/epigenetics and the gut microbial community. Host genetics influence the composition of gut microbiome, while the gut microbiota and their derived metabolites can induce host epigenetic modifications to affect the development of MASLD. The exploration of the intricate relationship between the gut microbiome and the genetic/epigenetic makeup of the host is anticipated to yield promising avenues for therapeutic interventions targeting MASLD and its associated conditions. In this review, we summarise the effects of gut microbiome, host genetics and epigenetic alterations in MASLD and MASLD-HCC. We further discuss research findings demonstrating the bidirectional impacts between gut microbiome and host genetics/epigenetics, emphasising the significance of this interconnection in MASLD prevention and treatment.

3.
Immunopharmacol Immunotoxicol ; : 1-13, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951964

RESUMEN

OBJECTIVE: This study aimed to investigate the use of 5,7,3',4'-tetramethoxyflavone (TMF) to treat pulmonary fibrosis (PF), a chronic and fatal lung disease. In vitro and in vivo models were used to examine the impact of TMF on PF. METHODS: NIH-3T3 (Mouse Embryonic Fibroblast) were exposed to transforming growth factor­ß1 (TGF-ß1) and treated with or without TMF. Cell growth was assessed using the MTT method, and cell migration was evaluated with the scratch wound assay. Protein and messenger ribonucleic acid (mRNA) levels of extracellular matrix (ECM) genes were analyzed by western blotting and quantitative reverse transcription-polymerase chain reaction (RT-PCR), respectively. Downstream molecules affected by TGF-ß1 were examined by western blotting. In vivo, mice with bleomycin-induced PF were treated with TMF, and lung tissues were analyzed with staining techniques. RESULTS: The in vitro results showed that TMF had no significant impact on cell growth or migration. However, it effectively inhibited myofibroblast activation and ECM production induced by TGF-ß1 in NIH-3T3 cells. This inhibition was achieved by suppressing various signaling pathways, including Smad, mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase/AKT (PI3K/AKT), and WNT/ß-catenin. The in vivo experiments demonstrated the therapeutic potential of TMF in reducing PF induced by bleomycin in mice, and there was no significant liver or kidney toxicity observed. CONCLUSION: These findings suggest that TMF has the potential to effectively inhibit myofibroblast activation and could be a promising treatment for PF. TMF achieves this inhibitory effect by targeting TGF-ß1/Smad and non-Smad pathways.

4.
Epigenetics Commun ; 4(1): 4, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962689

RESUMEN

Background: Exposure to environmental chemicals such as phthalates, phenols, and polycyclic aromatic hydrocarbons (PAHs) during pregnancy can increase the risk of adverse newborn outcomes. We explored the associations between maternal exposure to select environmental chemicals and DNA methylation in cord blood mononuclear cells (CBMC) and placental tissue (maternal and fetal sides) to identify potential mechanisms underlying these associations. Method: This study included 75 pregnant individuals who planned to give birth at the University of Cincinnati Hospital between 2014 and 2017. Maternal urine samples during the delivery visit were collected and analyzed for 37 biomarkers of phenols (12), phthalates (13), phthalate replacements (4), and PAHs (8). Cord blood and placenta tissue (maternal and fetal sides) were also collected to measure the DNA methylation intensities using the Infinium HumanMethylation450K BeadChip. We used linear regression, adjusting for potential confounders, to assess CpG-specific methylation changes in CBMC (n = 54) and placenta [fetal (n = 67) and maternal (n = 68) sides] associated with gestational chemical exposures (29 of 37 biomarkers measured in this study). To account for multiple testing, we used a false discovery rate q-values < 0.05 and presented results by limiting results with a genomic inflation factor of 1±0.5. Additionally, gene set enrichment analysis was conducted using the Kyoto Encyclopedia of Genes and Genomics pathways. Results: Among the 29 chemical biomarkers assessed for differential methylation, maternal concentrations of PAH metabolites (1-hydroxynaphthalene, 2-hydroxyfluorene, 4-hydroxyphenanthrene, 1-hydroxypyrene), monocarboxyisononyl phthalate, mono-3-carboxypropyl phthalate, and bisphenol A were associated with altered methylation in placenta (maternal or fetal side). Among exposure biomarkers associated with epigenetic changes, 1-hydroxynaphthalene, and mono-3-carboxypropyl phthalate were consistently associated with differential CpG methylation in the placenta. Gene enrichment analysis indicated that maternal 1-hydroxynaphthalene was associated with lipid metabolism and cellular processes of the placenta. Additionally, mono-3-carboxypropyl phthalate was associated with organismal systems and genetic information processing of the placenta. Conclusion: Among the 29 chemical biomarkers assessed during delivery, 1-hydroxynaphthalene and mono-3-carboxypropyl phthalate were associated with DNA methylation in the placenta. Supplementary Information: The online version contains supplementary material available at 10.1186/s43682-024-00027-7.

5.
Cell ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38964329

RESUMEN

The entry of coronaviruses is initiated by spike recognition of host cellular receptors, involving proteinaceous and/or glycan receptors. Recently, TMPRSS2 was identified as the proteinaceous receptor for HCoV-HKU1 alongside sialoglycan as a glycan receptor. However, the underlying mechanisms for viral entry remain unknown. Here, we investigated the HCoV-HKU1C spike in the inactive, glycan-activated, and functionally anchored states, revealing that sialoglycan binding induces a conformational change of the NTD and promotes the neighboring RBD of the spike to open for TMPRSS2 recognition, exhibiting a synergistic mechanism for the entry of HCoV-HKU1. The RBD of HCoV-HKU1 features an insertion subdomain that recognizes TMPRSS2 through three previously undiscovered interfaces. Furthermore, structural investigation of HCoV-HKU1A in combination with mutagenesis and binding assays confirms a conserved receptor recognition pattern adopted by HCoV-HKU1. These studies advance our understanding of the complex viral-host interactions during entry, laying the groundwork for developing new therapeutics against coronavirus-associated diseases.

7.
J Bone Miner Metab ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985180

RESUMEN

INTRODUCTION: Despite a large number of observational studies examining the effect of coffee consumption(CC) on bone disorders(BDs), particularly, osteoarthritis(OA), osteoportic fracture(OF), and rheumatoid arthritis(RA), the conclusions are highly controversial. Thus, it is essential to examine the causal association between CC and BDs. MATERIALS AND METHODS: Mendelian randomization (MR) analysis was performed to assess the causal influence of CC on OF, RA, and OA. The main endpoint was the odds ratio (OR) of the inverse variance weighted (IVW) approach. In addition, the weighted median (WM), MR-Egger regressions, MR-pleiotropy residual sum and outlier (MR-PRESSO) and multivariable MR (MVMR) were included in sensitivity analyses. Furthermore, the function of causal SNPs was evaluated by gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and protein-protein interaction networks. RESULTS: Primary MR analysis based on the IVW method suggested that changes in CC alter risk of OF (OR = 1.383, 95%CI 1.079-1.853, P = 0.039), RA(OR: 1.623, 95%CI 1.042-2.527, P = 0.032) and HOA (hip osteoarthritis, OR = 1.536, 95% CI 1.044-2.259, P = 0.021). However, these causal relationships were not robust in sensitivity analyses. In contrast, there is a positive causal relationship between increased CC and the risk of KOA (knee osteoarthritis, OR: 2.094, 95%CI: 1.592-2.754, P = 1.41 × 10-7), as evidenced by the IVW using random effect. A similar effect size was observed across all MR sensitivity analyses, with no evidence of horizontal pleiotropy. CONCLUSION: Based on our MR analysis, increased CC was causally linked to an increase in the risk of KOA. Genetic predictions suggested that CC reduction may have benefits for bone health.

8.
Front Psychol ; 15: 1363778, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38988383

RESUMEN

Introduction: This study investigated the association between parenting styles and malevolent creativity. Methods: It used latent profile analysis to compare the differences in malevolent creativity between different combinations of parenting styles with an online sample (N = 620). Results: The results of the study suggest that a three-profile solution best fits the data, and the three profiles were labelled positive open parenting, undifferentiated parenting and negative limited parenting. Subsequent analyses revealed that there were significant differences in malevolent creativity performance among the three parenting styles, with participants in the positive open parenting having more malevolent creativity. Those with undifferentiated parenting had the lowest scores. Discussion: The findings provide theoretical guidance for parenting strategies. Future intervention studies on malevolent creativity should also consider the potential impact of parenting style to obtain better results.

9.
Clin Interv Aging ; 19: 1203-1215, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974509

RESUMEN

Purpose: This study aims to develop a novel MRI-based paravertebral muscle quality (PVMQ) score for assessing muscle quality and to investigate its correlation with the degree of fat infiltration (DFF) and the vertebral bone quality (VBQ) score of paravertebral muscles. Additionally, the study compares the effectiveness of the PVMQ score and the VBQ score in assessing muscle quality and bone quality. Methods: PVMQ scores were derived from the ratio of paravertebral muscle signal intensity (SI) to L3 cerebrospinal fluid SI on T2-weighted MRI. Image J software assessed paravertebral muscle cross-sectional area (CSA) and DFF. Spearman rank correlation analyses explored associations between PVMQ, VBQ scores, DFF, and T-scores in both genders. Receiver operating characteristic (ROC) curves compared PVMQ and VBQ scores' effectiveness in distinguishing osteopenia/osteoporosis and high paraspinal muscle DFF. Results: In this study of 144 patients (94 females), PVMQ scores were significantly higher in osteoporosis and osteopenia groups compared to normals, with variations observed between genders (P < 0.05). PVMQ showed stronger positive correlation with VBQ scores and DFF in females than males (0.584 vs 0.445, 0.579 vs 0.528; P < 0.01). ROC analysis favored PVMQ over VBQ for low muscle mass in both genders (AUC = 0.767 vs 0.718, 0.793 vs 0.718). VBQ was better for bone mass in males (0.737/0.865 vs 0.691/0.858), whereas PVMQ excelled for females (0.808/0.764 vs 0.721/0.718). Conclusion: The novel PVMQ score provides a reliable assessment of paravertebral muscle quality and shows a strong correlation with VBQ scores and DFF, particularly in females. It outperforms VBQ scores in evaluating muscle mass and offers valuable insights for assessing bone mass in females. These findings underscore the potential of the PVMQ score as a dual-purpose tool for evaluating both muscle and bone health, informing future research and clinical practice.


Asunto(s)
Imagen por Resonancia Magnética , Osteoporosis , Humanos , Femenino , Masculino , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Anciano , Osteoporosis/diagnóstico por imagen , Enfermedades Óseas Metabólicas/diagnóstico por imagen , Músculos Paraespinales/diagnóstico por imagen , Curva ROC , Densidad Ósea , Vértebras Lumbares/diagnóstico por imagen
10.
aBIOTECH ; 5(2): 214-218, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38974869

RESUMEN

Efficient and precise genomic deletion shows promise for investigating the function of proteins in plant research and enhancing agricultural traits. In this study, we tested the PRIME-Del (PDel) strategy using a pair of prime editing guide RNAs (pegRNAs) that targeted opposite DNA strands and achieved an average deletion efficiency of 55.8% for 60 bp fragment deletions at six endogenous targets. Moreover, as high as 84.2% precise deletion efficiency was obtained for a 2000 bp deletion at the OsGS1 site in transgenic rice plants. To add the bases that were unintentionally deleted between the two nicking sequences, we used the PDel/Syn strategy, which introduced multiple synonymous base mutations in the region that had to be patched in the RT template. The PDel/Syn strategy achieved an average of 58.1% deletion efficiency at six endogenous targets, which was higher than the PDel strategy. The strategies presented in this study contribute to achieving more accurate and flexible deletions in transgenic rice plants. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-024-00153-9.

11.
Clin Transl Oncol ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39043977

RESUMEN

INTRODUCTION: Recently, genes involved in homologous recombination repair (HRR) pathway have been extensively studied. However, the landscapes of HRR gene mutations remain poorly defined in Chinese high-risk breast cancer (BC) patients. Our study aims to identify the status of germline and somatic HRR gene mutations and their association with clinicopathological features in these patients. MATERIALS AND METHODS: A total of 100 high-risk BC patients from our institution who underwent paired peripheral blood germline and BC tissues somatic 26 genes next-generation sequencing (NGS) from January 2018 to July 2023 were enrolled for retrospective analysis. RESULTS: Out of 100 high-risk BC patients, 55 (55%) had at least one germline or somatic mutation in HRR genes. Among them, 22% carried germline pathogenic variants (19 BRCA1/2 and 3 non-BRCA genes), 9% harbored somatic pathogenic mutations (3 BRCA1/2 and 6 non-BRCA genes). Among high-risk factors, family history and early onset BC showed a correlation with HRR gene mutations (p < 0.05). BRCA1 germline and HRR gene somatic mutations showed a correlation with TNBC, but BRCA2 germline mutations were associated with Luminal B/HER2-negative BC (p < 0.05). Patients with HRR gene somatic pathogenic variant more likely had a lympho-vascular invasion and distant metastasis (p < 0.05). CONCLUSION: The prevalence of HRR gene germline and somatic mutations were higher in Chinese BC patients with high risk factors. We strongly recommend that these high-risk BC patients receive comprehensive gene mutation testing, especially HRR genes, which are not only related to genetic consultation for BC patients and provide a theoretical basis for necessary prevention and individualized treatment.

12.
J Pharm Pharmacol ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39045868

RESUMEN

OBJECTIVES: The objective of the present case study was to increase the exposure of the poorly soluble crystalline compound A. METHODS: Mice received 10 mg/kg of crystalline compound A formulated in eight different cosolvent, oil, and cyclodextrin mixtures. KEY FINDINGS: In all cases, AUC0-24h and maximum blood/plasma concentration (Cmax) were in the range of 6-16 µM × h and <1.4 µm, respectively, with a bioavailability below 18%. When 6% cremophor (CrEL) was added to three selected vehicles, AUC0-24h and Cmax increased ~5-10 times. The obtained pharmacokinetic profile of the most improved formulation using CrEL was possible to superimpose on the one obtained after administration of a CrEL-free amorphous solid dispersion (ASD, HPMC-AS:drug, 80:20) suspension of compound A. CONCLUSIONS: It is crucial to find an optimal screen vehicle as early as possible for a poorly water-soluble lead series and then avoid time and resource-consuming vehicle testing of multiple compounds in vivo. An ASD approach is more suited for clinical development when more time and resources are allocated to the project. In this case study, some preclinical formulations were used to maximize exposure but also as preindicators for ASDs later in the development chain.

13.
Artículo en Inglés | MEDLINE | ID: mdl-39041273

RESUMEN

BACKGROUND: The aim of this study is to explore the mechanism of HRAS and HSPB1 in ferroptosis. Primary liver cancer is the third leading cause of tumor death worldwide. Hepatocellular carcinoma (HCC) constitutes 75%-85% of cases of primary liver cancer. HRAS and HSPB1 co-express in multiple cells and participate in tumor progression regulation. However, their expression regulation and role in HCC have not been reported. METHODS: We investigated the effects of HRAS and HSPB1 on ferroptosis in in vitro experiments. Here, the role and mechanism of HRAS and HSPB1 on ferroptosis were investigated by transfecting the specific siRNA or overexpressing plasmids in HCC cells. RESULTS: Bioinformatics analysis proved that HRAS and HSPB1 were highly expressed in HCC tissues and associated with poor prognosis of patients with HCC. In vitro, HRAS overexpression reduced the level of intracellular iron, ROS, and MDA production in HCC cells. Mechanistically, HRAS increased GPX4 expression and decreased the levels of ACSL4 and P53. HRAS also increased HSPB1 expression, and HRAS knockdown downregulated HSPB1 levels in HCC cells. Importantly, overexpression of HSPB1 reversed HRAS-increased concentration of iron, MDA, and ROS and eliminated HRAS-induced ferroptosis. Moreover, HRAS enhanced the proliferation and invasion by targeting HSPB1. CONCLUSION: The regulation of HSPB1 by HRAS enhanced the resistance of HCC cells to ferroptosis. HRAS promoted proliferation and invasion by upregulating HSPB1. This research provides a new potential strategy for HCC treatment.

14.
Chem Rev ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39042038

RESUMEN

Designing efficient and cost-effective materials is pivotal to solving the key scientific and technological challenges at the interface of energy, environment, and sustainability for achieving NetZero. Two-dimensional transition metal dichalcogenides (2D TMDs) represent a unique class of materials that have catered to a myriad of energy conversion and storage (ECS) applications. Their uniqueness arises from their ultra-thin nature, high fractions of atoms residing on surfaces, rich chemical compositions featuring diverse metals and chalcogens, and remarkable tunability across multiple length scales. Specifically, the rich electronic/electrical, optical, and thermal properties of 2D TMDs have been widely exploited for electrochemical energy conversion (e.g., electrocatalytic water splitting), and storage (e.g., anodes in alkali ion batteries and supercapacitors), photocatalysis, photovoltaic devices, and thermoelectric applications. Furthermore, their properties and performances can be greatly boosted by judicious structural and chemical tuning through phase, size, composition, defect, dopant, topological, and heterostructure engineering. The challenge, however, is to design and control such engineering levers, optimally and specifically, to maximize performance outcomes for targeted applications. In this review we discuss, highlight, and provide insights on the significant advancements and ongoing research directions in the design and engineering approaches of 2D TMDs for improving their performance and potential in ECS applications.

16.
Materials (Basel) ; 17(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38998272

RESUMEN

Silicon (Si) shows great potential as an anode material for lithium-ion batteries. However, it experiences significant expansion in volume as it undergoes the charging and discharging cycles, presenting challenges for practical implementation. Nanostructured Si has emerged as a viable solution to address these challenges. However, it requires a complex preparation process and high costs. In order to explore the above problems, this study devised an innovative approach to create Si/C composite anodes: micron-porous silicon (p-Si) was synthesized at low cost at a lower silver ion concentration, and then porous silicon-coated carbon (p-Si@C) composites were prepared by compositing nanohollow carbon spheres with porous silicon, which had good electrochemical properties. The initial coulombic efficiency of the composite was 76.51%. After undergoing 250 cycles at a current density of 0.2 A·g-1, the composites exhibited a capacity of 1008.84 mAh·g-1. Even when subjected to a current density of 1 A·g-1, the composites sustained a discharge capacity of 485.93 mAh·g-1 even after completing 1000 cycles. The employment of micron-structured p-Si improves cycling stability, which is primarily due to the porous space it provides. This porous structure helps alleviate the mechanical stress caused by volume expansion and prevents Si particles from detaching from the electrodes. The increased surface area facilitates a longer pathway for lithium-ion transport, thereby encouraging a more even distribution of lithium ions and mitigating the localized expansion of Si particles during cycling. Additionally, when Si particles expand, the hollow carbon nanospheres are capable of absorbing the resulting stress, thus preventing the electrode from cracking. The as-prepared p-Si utilizing metal-assisted chemical etching holds promising prospects as an anode material for lithium-ion batteries.

17.
Materials (Basel) ; 17(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38998318

RESUMEN

Mullite fiber felt is a promising material that may fulfill the demands of advanced flexible external thermal insulation blankets. However, research on the fabrication and performance of mullite fiber felt with high-temperature resistance and thermal stability is still lacking. In this work, mullite fibers were selected as raw materials for the fabrication of mullite fibrous porous materials with a three-dimensional net structure. Said materials' high-temperature resistance and thermal stability were investigated by assessing the effects of various heat treatment temperatures (1100 °C, 1300 °C, and 1500 °C) on the phase composition, microstructure, and performance of their products. When the heat treatment temperature was below 1300 °C, both the phase compositions and microstructures of products exhibited stability. The compressive rebound rate of the product before and after 1100 °C reached 92.9% and 84.5%, respectively. The backside temperature of the as-prepared products was 361.6 °C when tested at 1500 °C for 4000 s. The as-prepared mullite fibrous porous materials demonstrated excellent high-temperature resistance, thermal stability, thermal insulation performance, and compressive rebound capacity, thereby indicating the great potential of the as-prepared mullite fibrous porous materials in the form of mullite fiber felt within advanced flexible external thermal insulation blankets.

18.
Patterns (N Y) ; 5(6): 100991, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-39005492

RESUMEN

Deep-learning-based classification models are increasingly used for predicting molecular properties in drug development. However, traditional classification models using the Softmax function often give overconfident mispredictions for out-of-distribution samples, highlighting a critical lack of accurate uncertainty estimation. Such limitations can result in substantial costs and should be avoided during drug development. Inspired by advances in evidential deep learning and Posterior Network, we replaced the Softmax function with a normalizing flow to enhance the uncertainty estimation ability of the model in molecular property classification. The proposed strategy was evaluated across diverse scenarios, including simulated experiments based on a synthetic dataset, ADMET predictions, and ligand-based virtual screening. The results demonstrate that compared with the vanilla model, the proposed strategy effectively alleviates the problem of giving overconfident but incorrect predictions. Our findings support the promising application of evidential deep learning in drug development and offer a valuable framework for further research.

19.
Artículo en Inglés | MEDLINE | ID: mdl-39034728

RESUMEN

BACKGROUND: Histone methyltransferase absent, small, or homeotic discs1-like (ASH1L) is composed of su(var)3-9, enhancer of zeste, trithorax (SET) domain, pleckstrin homology domain (PHD) domain, middle (MID) domain, and bromo adjacent homology (BAH) domain. The SET domain of ASH1L is known to mediate mediate H3K36 dimethylation (H3K36me2) modification. However, the specific functions of the PHD-BAH domain remain largely unexplored. This study aimed to explore the biological function of the PHD-BAH domain in ASH1L. METHODS: We employed a range of techniques, including a prokaryotic fusion protein expression purification system, pull-down assay, Isothermal Titration Calorimetry (ITC), polymerase chain reaction (PCR), and sitedirected mutagenesis, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR-Cas9) gene editing, cell culture experiment, western blot, cell proliferation assay, and cell apoptosis test. RESULTS: The PHD-BAH domain in ASH1L preferentially binds to the H3K4me2 peptide over H3K4 monomethylation (H3K4me1) and H3K4 trimethylation (H3K4me3) peptide. Notably, the W2603A mutation within the PHD-BAH domain could disrupt the interaction with H3K4me2 in vitro. Compared with wild-type Cholangiocarcinoma (CHOL) cells, deletion of the PHD-BAH domain in ASH1L led to increased CHOL cell apoptosis and reduced cell proliferation (P < 0.001). Additionally, the W2603A mutation affected the regulation of the proteasome 20S subunit beta (PSMB) family gene set. CONCLUSION: W2603A mutation was crucial for the interaction between the PHD-BAH domain and the H3K4me2 peptide. ASH1L regulated CHOL cell survival and proliferation through its PHD-BAH domain by modulating the expression of the PSMB family gene set.

20.
Proc Natl Acad Sci U S A ; 121(29): e2323040121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38985761

RESUMEN

Stomata in leaves regulate gas (carbon dioxide and water vapor) exchange and water transpiration between plants and the atmosphere. SLow Anion Channel 1 (SLAC1) mediates anion efflux from guard cells and plays a crucial role in controlling stomatal aperture. It serves as a central hub for multiple signaling pathways in response to environmental stimuli, with its activity regulated through phosphorylation via various plant protein kinases. However, the molecular mechanism underlying SLAC1 phosphoactivation has remained elusive. Through a combination of protein sequence analyses, AlphaFold-based modeling and electrophysiological studies, we unveiled that the highly conserved motifs on the N- and C-terminal segments of SLAC1 form a cytosolic regulatory domain (CRD) that interacts with the transmembrane domain(TMD), thereby maintaining the channel in an autoinhibited state. Mutations in these conserved motifs destabilize the CRD, releasing autoinhibition in SLAC1 and enabling its transition into an activated state. Our further studies demonstrated that SLAC1 activation undergoes an autoinhibition-release process and subsequent structural changes in the pore helices. These findings provide mechanistic insights into the activation mechanism of SLAC1 and shed light on understanding how SLAC1 controls stomatal closure in response to environmental stimuli.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Estomas de Plantas , Transducción de Señal , Fosforilación , Estomas de Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Dominios Proteicos , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...